8 resultados para mathematical concepts
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
O presente estudo teve como objetivo geral compreender o processo de aprendizagem da matemática de estudantes durante o ciclo de alfabetização na cidade do Rio de Janeiro. Para isso, fez-se uso dos dados de uma pesquisa longitudinal, denominada Estudo Longitudinal da Geração Escolar 2005 GERES 2005. Esta Pesquisa consistiu em um estudo de painel que acompanhou ao longo de quatro anos consecutivos (de 2005 a 2008) uma amostra de estudantes do primeiro segmento do Ensino Fundamental (1 à 4 série e/ou 2 ao 5 ano) em cinco cidades brasileiras - Rio de Janeiro, Belo Horizonte, Campinas, Campo Grande e Salvador, por meio de testes de Matemática e Leitura aplicados aos estudantes e de questionários contextuais aplicados a seus professores, aos diretores das escolas, e aos pais. Especificamente o estudo concentrou-se sobre os dados referentes à rede municipal do Rio de Janeiro e mais especificamente ao período correspondente ao ciclo de alfabetização. Foram analisados os resultados médios em matemática dos estudantes nas três primeiras Ondas de avaliação e o percentual de acertos nos itens comuns a essas Ondas, com o intuito de verificar a evolução da aprendizagem em matemática ao longo do início da escolarização nos anos iniciais. Dentre os principais resultados da pesquisa foi possível perceber certa fragilidade na construção dos conceitos matemáticos básico dos anos iniciais, evidenciando que possivelmente a construção da linguagem matemática encontra-se aquém do esperado para os estudantes no início de sua formação matemática. Possivelmente, estes resultados reflitam uma prática comum nas escolas em que a ênfase do processo de aprendizagem esteja centrada em processos individuais, em contextos pouco familiares à criança, além da proposição de atividades que pouco exploram o raciocínio lógico e dedutivo do aluno, ou seja, o pensar sobre de forma lúdica e criativa. Tudo isso tem contribuído para aumentar a distância entre estudantes de diferentes classes sociais ou diferentes redes de ensino.
Resumo:
A presente dissertação tem o objetivo de mostrar a arte Origami sob um contexto matemático, apresentando um pequeno resumo dos aspectos história e o desenvolvimento do Origami ao longo do tempo e dando maior destaque às suas aplicações na matemática, com o emprego dos axiomas de Huzita e a proposta de ampliação deste conjunto de axiomas com a inclusão da circunferência no papel Origami. Com o uso das técnicas de dobraduras, este trabalho mostra várias aplicações do Origami na matemática, tais como: a solução de alguns problemas clássicos, a construção de polígonos, a demonstração da soma dos ângulos internos de um triângulo, cálculo de algumas áreas, a solução de alguns problemas de máximos e mínimos, seguidos dos conceitos matemático envolvidos em cada um deles. E a inclusão da circunferência no plano Origami permitiu ainda, o estudo das construções das cônicas por dobraduras
Resumo:
A presente dissertação tem o objetivo de mostrar a arte Origami sob um contexto matemático, apresentando um pequeno resumo dos aspectos história e o desenvolvimento do Origami ao longo do tempo e dando maior destaque às suas aplicações na matemática, com o emprego dos axiomas de Huzita e a proposta de ampliação deste conjunto de axiomas com a inclusão da circunferência no papel Origami. Com o uso das técnicas de dobraduras, este trabalho mostra várias aplicações do Origami na matemática, tais como: a solução de alguns problemas clássicos, a construção de polígonos, a demonstração da soma dos ângulos internos de um triângulo, cálculo de algumas áreas, a solução de alguns problemas de máximos e mínimos, seguidos dos conceitos matemático envolvidos em cada um deles. E a inclusão da circunferência no plano Origami permitiu ainda, o estudo das construções das cônicas por dobraduras.
Resumo:
As relações sino-americanas passaram a desempenhar um papel ordenador fundamental na condução dos assuntos internacionais neste século XXI, ao ponto de alguns analistas criarem o termo G-2. A crise financeira de 2008, por representar um golpe profundo nos países desenvolvidos e nos direcionamentos de valores do estágio atual de desenvolvimento do sistema, levou a relação China-Estados Unidos a um outro patamar. Ao passo que os norte-americanos tiveram de se preocupar em resolver as turbulências causadas na economia doméstica, o país asiático passou a desempenhar um papel crucial no processo de recuperação da economia global. O presente trabalho tem o objetivo, então, de analisar de que forma a crise de 2008, também chamada de crise do subprime, impactou os ordenamentos centrais do Sistema Internacional neste período de recuperação e como as relações sino-americanas podem ser usadas para uma melhor compreensão deste fenômeno. Na busca por traçar respostas mais sólidas, a pesquisa delineia-se em três frentes principais de análise: as relações diretas entre China e Estados Unidos; as relações dos dois países com um terceiro ator, a saber, a África; e os posicionamentos adotados por ambas as partes nas instituições multilaterais. Para tal, primeiro buscou-se aliar análises qualitativas e quantitativas, baseadas em instrumentais matemáticos e também na Ciência Política, História e Economia Política Internacional, para alcançar os resultados definidos nos objetivos da pesquisa. A dissertação é dividida em cinco capítulos, onde os três primeiros tratam de introduzir o assunto estudado e as principais vertentes teóricas utilizadas ao longo do trabalho. Os últimos envolvem a aplicação prática dos conceitos interdisciplinares escolhidos como aliados do trabalho empírico e a apresentação dos resultados finais. Em linhas gerais, concluiu-se que a crise acentuou os aspectos de interdependência entre China e Estados Unidos em todas as frentes estudadas. Avaliando as relações sino-americanas e os rumos do sistema internacional pós-crise em três facetas, concluímos também que tal exercício analítico ofereceu recursos mais palpáveis no fornecimento das respostas procuradas pela dissertação.
Resumo:
Ao contrário do período precedente de criação da chamada ciência moderna, o século XVIII parece não desempenhar um papel fundamental no desenvolvimento da física. Na visão de muitos autores, o século das luzes é considerado como uma fase de organização da mecânica que teve seu coroamento com as obras de Lagrange, imediatamente precedidas por Euler e dAlembert. Muitos autores afirmam que na formulação da mecânica racional houve uma eliminação gradual da metafísica e também da teologia e que o surgimento da física moderna veio acompanhado por uma rejeição da metafísica aristotélica da substância e qualidade, forma e matéria, potência e ato. O ponto central da tese é mostrar que, no século XVIII, houve uma preocupação e um grande esforço de alguns filósofos naturais que participaram da formação da mecânica, em determinar como seria possível descrever fenômenos através da matemática. De uma forma geral, a filosofia mecanicista exigia que as mudanças observadas no mundo natural fossem explicadas apenas em termos de movimento e de rearranjos das partículas da matéria, uma vez que os predecessores dos filósofos iluministas conseguiram, em parte, eliminar da filosofia natural o conceito de causas finais e a maior parte dos conceitos aristotélicos de forma e substância, por exemplo. Porém, os filósofos mecanicistas divergiam sobre as causas do movimento. O que faria um corpo se mover? Uma força externa? Uma força interna? Força nenhuma? Todas essas posições tinham seus adeptos e todas sugeriam reflexões filosóficas que ultrapassavam os limites das ciências da natureza. Mais ainda: conceitos como espaço, tempo, força, massa e inércia, por exemplo, são conceitos imprescindíveis da mecânica que representam uma realidade. Mas como a manifestação dessa realidade se torna possível? Como foram definidos esses conceitos? Embora não percebamos explicitamente uma discussão filosófica em muitos livros que versam sobre a mecânica, atitudes implícitas dessa natureza são evidentes no tratamento das questões tais como a ambição à universalidade e a aplicação da matemática. Galileu teve suas motivações e suas razões para afirmar que o livro da natureza está escrito em liguagem matemática. No entanto, embora a matemática tenha se tornado a linguagem da física, mostramos com esta tese que a segunda não se reduz à primeira. Podemos, à luz desta pesquisa, falarmos de uma mecânica racional no sentido de ser ela proposta pela razão para organizar e melhor estruturar dados observáveis obtidos através da experimentação. Porém, mostramos que essa ciência não foi, como os filósofos naturais pretendiam que assim fosse, obtidas sem hipóteses e convenções subjetivas. Por detrás de uma representação explicativa e descritiva dos fenômenos da natureza e de uma consistência interna de seus próprios conteúdos confirmados através da matemática, verificamos a presença da metafísica.
Resumo:
Métodos de otimização que utilizam condições de otimalidade de primeira e/ou segunda ordem são conhecidos por serem eficientes. Comumente, esses métodos iterativos são desenvolvidos e analisados à luz da análise matemática do espaço euclidiano n-dimensional, cuja natureza é de caráter local. Consequentemente, esses métodos levam a algoritmos iterativos que executam apenas as buscas locais. Assim, a aplicação de tais algoritmos para o cálculo de minimizadores globais de uma função não linear,especialmente não-convexas e multimodais, depende fortemente da localização dos pontos de partida. O método de Otimização Global Topográfico é um algoritmo de agrupamento, que utiliza uma abordagem baseada em conceitos elementares da teoria dos grafos, a fim de gerar bons pontos de partida para os métodos de busca local, a partir de pontos distribuídos de modo uniforme no interior da região viável. Este trabalho tem dois objetivos. O primeiro é realizar uma nova abordagem sobre método de Otimização Global Topográfica, onde, pela primeira vez, seus fundamentos são formalmente descritos e suas propriedades básicas são matematicamente comprovadas. Neste contexto, propõe-se uma fórmula semi-empírica para calcular o parâmetro chave deste algoritmo de agrupamento, e, usando um método robusto e eficiente de direções viáveis por pontos-interiores, estendemos o uso do método de Otimização Global Topográfica a problemas com restrições de desigualdade. O segundo objetivo é a aplicação deste método para a análise de estabilidade de fase em misturas termodinâmicas,o qual consiste em determinar se uma dada mistura se apresenta em uma ou mais fases. A solução deste problema de otimização global é necessária para o cálculo do equilíbrio de fases, que é um problema de grande importância em processos da engenharia, como, por exemplo, na separação por destilação, em processos de extração e simulação da recuperação terciária de petróleo, entre outros. Além disso, afim de ter uma avaliação inicial do potencial dessa técnica, primeiro vamos resolver 70 problemas testes, e então comparar o desempenho do método proposto aqui com o solver MIDACO, um poderoso software recentemente introduzido no campo da otimização global.
Resumo:
Em 1828 foi observado um fenômeno no microscópio em que se visualizava minúsculos grãos de pólen mergulhados em um líquido em repouso que mexiam-se de forma aleatória, desenhando um movimento desordenado. A questão era compreender este movimento. Após cerca de 80 anos, Einstein (1905) desenvolveu uma formulação matemática para explicar este fenômeno, tratado por movimento Browniano, teoria cada vez mais desenvolvida em muitas das áreas do conhecimento, inclusive recentemente em modelagem computacional. Objetiva-se pontuar os pressupostos básicos inerentes ao passeio aleatório simples considerando experimentos com e sem problema de valor de contorno para melhor compreensão ao no uso de algoritmos aplicados a problemas computacionais. Foram explicitadas as ferramentas necessárias para aplicação de modelos de simulação do passeio aleatório simples nas três primeiras dimensões do espaço. O interesse foi direcionado tanto para o passeio aleatório simples como para possíveis aplicações para o problema da ruína do jogador e a disseminação de vírus em rede de computadores. Foram desenvolvidos algoritmos do passeio aleatório simples unidimensional sem e com o problema do valor de contorno na plataforma R. Similarmente, implementados para os espaços bidimensionais e tridimensionais,possibilitando futuras aplicações para o problema da disseminação de vírus em rede de computadores e como motivação ao estudo da Equação do Calor, embora necessita um maior embasamento em conceitos da Física e Probabilidade para dar continuidade a tal aplicação.
Resumo:
Os métodos de otimização que adotam condições de otimalidade de primeira e/ou segunda ordem são eficientes e normalmente esses métodos iterativos são desenvolvidos e analisados através da análise matemática do espaço euclidiano n-dimensional, o qual tem caráter local. Esses métodos levam a algoritmos iterativos que são usados para o cálculo de minimizadores globais de uma função não linear, principalmente não-convexas e multimodais, dependendo da posição dos pontos de partida. Método de Otimização Global Topográfico é um algoritmo de agrupamento, o qual é fundamentado nos conceitos elementares da teoria dos grafos, com a finalidade de gerar bons pontos de partida para os métodos de busca local, com base nos pontos distribuídos de modo uniforme no interior da região viável. Este trabalho tem como objetivo a aplicação do método de Otimização Global Topográfica junto com um método robusto e eficaz de direções viáveis por pontos-interiores a problemas de otimização que tem restrições de igualdade e/ou desigualdade lineares e/ou não lineares, que constituem conjuntos viáveis com interiores não vazios. Para cada um destes problemas, é representado também um hiper-retângulo compreendendo cada conjunto viável, onde os pontos amostrais são gerados.