2 resultados para markov random field

em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ


Relevância:

30.00% 30.00%

Publicador:

Resumo:

As técnicas de injeção de traçadores têm sido amplamente utilizadas na investigação de escoamentos em meios porosos, principalmente em problemas envolvendo a simulação numérica de escoamentos miscíveis em reservatórios de petróleo e o transporte de contaminantes em aquíferos. Reservatórios subterrâneos são em geral heterogêneos e podem apresentar variações significativas das suas propriedades em várias escalas de comprimento. Estas variações espaciais são incorporadas às equações que governam o escoamento no interior do meio poroso por meio de campos aleatórios. Estes campos podem prover uma descrição das heterogeneidades da formação subterrânea nos casos onde o conhecimento geológico não fornece o detalhamento necessário para a predição determinística do escoamento através do meio poroso. Nesta tese é empregado um modelo lognormal para o campo de permeabilidades a fim de reproduzir-se a distribuição de permeabilidades do meio real, e a geração numérica destes campos aleatórios é feita pelo método da Soma Sucessiva de Campos Gaussianos Independentes (SSCGI). O objetivo principal deste trabalho é o estudo da quantificação de incertezas para o problema inverso do transporte de um traçador em um meio poroso heterogêneo empregando uma abordagem Bayesiana para a atualização dos campos de permeabilidades, baseada na medição dos valores da concentração espacial do traçador em tempos específicos. Um método do tipo Markov Chain Monte Carlo a dois estágios é utilizado na amostragem da distribuição de probabilidade a posteriori e a cadeia de Markov é construída a partir da reconstrução aleatória dos campos de permeabilidades. Na resolução do problema de pressão-velocidade que governa o escoamento empregase um método do tipo Elementos Finitos Mistos adequado para o cálculo acurado dos fluxos em campos de permeabilidades heterogêneos e uma abordagem Lagrangiana, o método Forward Integral Tracking (FIT), é utilizada na simulação numérica do problema do transporte do traçador. Resultados numéricos são obtidos e apresentados para um conjunto de realizações amostrais dos campos de permeabilidades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A segmentação dos nomes nas suas partes constitutivas é uma etapa fundamental no processo de integração de bases de dados por meio das técnicas de vinculação de registros. Esta separação dos nomes pode ser realizada de diferentes maneiras. Este estudo teve como objetivo avaliar a utilização do Modelo Escondido de Markov (HMM) na segmentação nomes e endereços de pessoas e a eficiência desta segmentação no processo de vinculação de registros. Foram utilizadas as bases do Sistema de Informações sobre Mortalidade (SIM) e do Subsistema de Informação de Procedimentos de Alta Complexidade (APAC) do estado do Rio de Janeiro no período entre 1999 a 2004. Uma metodologia foi proposta para a segmentação de nome e endereço sendo composta por oito fases, utilizando rotinas implementadas em PL/SQL e a biblioteca JAHMM, implementação na linguagem Java de algoritmos de HMM. Uma amostra aleatória de 100 registros de cada base foi utilizada para verificar a correção do processo de segmentação por meio do modelo HMM.Para verificar o efeito da segmentação do nome por meio do HMM, três processos de vinculação foram aplicados sobre uma amostra das duas bases citadas acima, cada um deles utilizando diferentes estratégias de segmentação, a saber: 1) divisão dos nomes pela primeira parte, última parte e iniciais do nome do meio; 2) divisão do nome em cinco partes; (3) segmentação segundo o HMM. A aplicação do modelo HMM como mecanismo de segmentação obteve boa concordância quando comparado com o observador humano. As diferentes estratégias de segmentação geraram resultados bastante similares na vinculação de registros, tendo a estratégia 1 obtido um desempenho pouco melhor que as demais. Este estudo sugere que a segmentação de nomes brasileiros por meio do modelo escondido de Markov não é mais eficaz do que métodos tradicionais de segmentação.