4 resultados para heurísticas

em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nas últimas décadas, o problema de escalonamento da produção em oficina de máquinas, na literatura referido como JSSP (do inglês Job Shop Scheduling Problem), tem recebido grande destaque por parte de pesquisadores do mundo inteiro. Uma das razões que justificam tamanho interesse está em sua alta complexidade. O JSSP é um problema de análise combinatória classificado como NP-Difícil e, apesar de existir uma grande variedade de métodos e heurísticas que são capazes de resolvê-lo, ainda não existe hoje nenhum método ou heurística capaz de encontrar soluções ótimas para todos os problemas testes apresentados na literatura. A outra razão basea-se no fato de que esse problema encontra-se presente no diaa- dia das indústrias de transformação de vários segmento e, uma vez que a otimização do escalonamento pode gerar uma redução significativa no tempo de produção e, consequentemente, um melhor aproveitamento dos recursos de produção, ele pode gerar um forte impacto no lucro dessas indústrias, principalmente nos casos em que o setor de produção é responsável por grande parte dos seus custos totais. Entre as heurísticas que podem ser aplicadas à solução deste problema, o Busca Tabu e o Multidão de Partículas apresentam uma boa performance para a maioria dos problemas testes encontrados na literatura. Geralmente, a heurística Busca Tabu apresenta uma boa e rápida convergência para pontos ótimos ou subótimos, contudo esta convergência é frequentemente interrompida por processos cíclicos e a performance do método depende fortemente da solução inicial e do ajuste de seus parâmetros. A heurística Multidão de Partículas tende a convergir para pontos ótimos, ao custo de um grande esforço computacional, sendo que sua performance também apresenta uma grande sensibilidade ao ajuste de seus parâmetros. Como as diferentes heurísticas aplicadas ao problema apresentam pontos positivos e negativos, atualmente alguns pesquisadores começam a concentrar seus esforços na hibridização das heurísticas existentes no intuito de gerar novas heurísticas híbridas que reúnam as qualidades de suas heurísticas de base, buscando desta forma diminuir ou mesmo eliminar seus aspectos negativos. Neste trabalho, em um primeiro momento, são apresentados três modelos de hibridização baseados no esquema geral das Heurísticas de Busca Local, os quais são testados com as heurísticas Busca Tabu e Multidão de Partículas. Posteriormente é apresentada uma adaptação do método Colisão de Partículas, originalmente desenvolvido para problemas contínuos, onde o método Busca Tabu é utilizado como operador de exploração local e operadores de mutação são utilizados para perturbação da solução. Como resultado, este trabalho mostra que, no caso dos modelos híbridos, a natureza complementar e diferente dos métodos Busca Tabu e Multidão de Partículas, na forma como são aqui apresentados, da origem à algoritmos robustos capazes de gerar solução ótimas ou muito boas e muito menos sensíveis ao ajuste dos parâmetros de cada um dos métodos de origem. No caso do método Colisão de Partículas, o novo algorítimo é capaz de atenuar a sensibilidade ao ajuste dos parâmetros e de evitar os processos cíclicos do método Busca Tabu, produzindo assim melhores resultados.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta tese apresenta um estudo sobre modelagem computacional onde são aplicadas meta-heurísticas de otimização na solução de problemas inversos de transferência radiativa em meios unidimensionais com albedo dependente da variável óptica, e meios unidimensionais de duas camadas onde o problema inverso é tratado como um problema de otimização. O trabalho aplica uma meta-heurística baseada em comportamentos da natureza conhecida como algoritmo dos vagalumes. Inicialmente, foram feitos estudos comparativos de desempenho com dois outros algoritmos estocásticos clássicos. Os resultados encontrados indicaram que a escolha do algoritmo dos vagalumes era apropriada. Em seguida, foram propostas outras estratégias que foram inseridas no algoritmo dos vagalumes canônico. Foi proposto um caso onde se testou e investigou todas as potenciais estratégias. As que apresentaram os melhores resultados foram, então, testadas em mais dois casos distintos. Todos os três casos testados foram em um ambiente de uma camada, com albedo de espalhamento dependente da posição espacial. As estratégias que apresentaram os resultados mais competitivos foram testadas em um meio de duas camadas. Para este novo cenário foram propostos cinco novos casos de testes. Os resultados obtidos, pelas novas variantes do algoritmo dos vagalumes, foram criticamente analisados.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O surgimento de novos serviços de telecomunicações tem provocado um enorme aumento no tráfego de dados nas redes de transmissão. Para atender a essa demanda crescente, novas tecnologias foram desenvolvidas e implementadas ao longo dos anos, sendo que um dos principais avanços está na área de transmissão óptica, devido à grande capacidade de transporte de informação da fibra óptica. A tecnologia que melhor explora a capacidade desse meio de transmissão atualmente é a multiplexação por divisão de comprimento de onda ou Wavelength Division Multiplexing (WDM) que permite a transmissão de diversos sinais utilizando apenas uma fibra óptica. Redes ópticas WDM se tornaram muito complexas, com enorme capacidade de transmissão de informação (terabits por segundo), para atender à explosão de necessidade por largura de banda. Nesse contexto, é de extrema importância que os recursos dessas redes sejam utilizados de forma inteligente e otimizada. Um dos maiores desafios em uma rede óptica é a escolha de uma rota e a seleção de um comprimento de onda disponível na rede para atender uma solicitação de conexão utilizando o menor número de recursos possível. Esse problema é bastante complexo e ficou conhecido como problema de roteamento e alocação de comprimento de onda ou, simplesmente, problema RWA (Routing and Wavelentgh Assignment problem). Muitos estudos foram realizados com o objetivo de encontrar uma solução eficiente para esse problema, mas nem sempre é possível aliar bom desempenho com baixo tempo de execução, requisito fundamental em redes de telecomunicações. A técnica de algoritmo genético (AG) tem sido utilizada para encontrar soluções de problemas de otimização, como é o caso do problema RWA, e tem obtido resultados superiores quando comparada com soluções heurísticas tradicionais encontradas na literatura. Esta dissertação apresenta, resumidamente, os conceitos de redes ópticas e de algoritmos genéticos, e descreve uma formulação do problema RWA adequada à solução por algoritmo genético.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta dissertação investiga a aplicação dos algoritmos evolucionários inspirados na computação quântica na síntese de circuitos sequenciais. Os sistemas digitais sequenciais representam uma classe de circuitos que é capaz de executar operações em uma determinada sequência. Nos circuitos sequenciais, os valores dos sinais de saída dependem não só dos valores dos sinais de entrada como também do estado atual do sistema. Os requisitos cada vez mais exigentes quanto à funcionalidade e ao desempenho dos sistemas digitais exigem projetos cada vez mais eficientes. O projeto destes circuitos, quando executado de forma manual, se tornou demorado e, com isso, a importância das ferramentas para a síntese automática de circuitos cresceu rapidamente. Estas ferramentas conhecidas como ECAD (Electronic Computer-Aided Design) são programas de computador normalmente baseados em heurísticas. Recentemente, os algoritmos evolucionários também começaram a ser utilizados como base para as ferramentas ECAD. Estas aplicações são referenciadas na literatura como eletrônica evolucionária. Os algoritmos mais comumente utilizados na eletrônica evolucionária são os algoritmos genéticos e a programação genética. Este trabalho apresenta um estudo da aplicação dos algoritmos evolucionários inspirados na computação quântica como uma ferramenta para a síntese automática de circuitos sequenciais. Esta classe de algoritmos utiliza os princípios da computação quântica para melhorar o desempenho dos algoritmos evolucionários. Tradicionalmente, o projeto dos circuitos sequenciais é dividido em cinco etapas principais: (i) Especificação da máquina de estados; (ii) Redução de estados; (iii) Atribuição de estados; (iv) Síntese da lógica de controle e (v) Implementação da máquina de estados. O Algoritmo Evolucionário Inspirado na Computação Quântica (AEICQ) proposto neste trabalho é utilizado na etapa de atribuição de estados. A escolha de uma atribuição de estados ótima é tratada na literatura como um problema ainda sem solução. A atribuição de estados escolhida para uma determinada máquina de estados tem um impacto direto na complexidade da sua lógica de controle. Os resultados mostram que as atribuições de estados obtidas pelo AEICQ de fato conduzem à implementação de circuitos de menor complexidade quando comparados com os circuitos gerados a partir de atribuições obtidas por outros métodos. O AEICQ e utilizado também na etapa de síntese da lógica de controle das máquinas de estados. Os circuitos evoluídos pelo AEICQ são otimizados segundo a área ocupada e o atraso de propagação. Estes circuitos são compatíveis com os circuitos obtidos por outros métodos e em alguns casos até mesmo superior em termos de área e de desempenho, sugerindo que existe um potencial de aplicação desta classe de algoritmos no projeto de circuitos eletrônicos.