8 resultados para ethanol as fuel
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
Devido ao efeito estufa, a produção de hidrogênio a partir da reação de reforma do bioetanol tem se tornado um assunto de grande interesse em catálise heterogênea. Os catalisadores à base de Pt são empregados nos processos de purificação de H2 e também em eletrocatalisadores das células a combustível do tipo membrana polimérica (PEMFC). O hidrogênio obtido a partir da reforma do etanol contém como contaminante o acetaldeído e pequenas quantidades de CO. Assim, pode-se prever que muitas reações podem ocorrer na presença de catalisadores de Pt durante o processo de purificação do H2 e mesmo no próprio eletrocatalisador. Desta forma, este trabalho tem como objetivo descrever o comportamento do acetaldeído na presença de catalisadores de Pt. Para tanto foram preparados dois catalisadores, Pt/SiO2 e Pt/USY, contendo 1,5% de metal em ambos. Também foi estudado um eletrocatalisador (comercial) de Pt suportado em carvão (Pt/C). Os catalisadores foram caracterizados através das técnicas de análise textural, difração de raios X (DRX), quimissorção de H2, reação de desidrogenação do ciclohexano, espectroscopia no infravermelho de piridina adsorvida, dessorção a temperatura programada de n-butilamina (TPD de n-butilamina), dessorção a temperatura programada de CO2 (TPD-CO2), análise termogravimétrica, microscopia eletrônica de varredura (MEV) e espectroscopia de dispersão de energia (EDS). Os testes catalíticos foram realizados entre as temperaturas de 50 e 350 C em corrente contendo acetaldeído, H2 e N2. Foi observado que as propriedades ácido-básicas dos suportes promovem as reações de condensação com formação de éter etílico e acetato de etila. O acetaldeído em catalisadores de Pt sofre quebra das ligações C-C e C=O. A primeira ocorre em uma ampla faixa de temperaturas, enquanto a segunda apenas em temperaturas abaixo de 200 C. A quebra da ligação C-C produz metano e CO. Já a quebra da ligação C=O gera carbono residual nos catalisadores, assim como espécies oxigênio, que por sua vez são capazes de eliminar o CO da superfície dos catalisadores. Nota-se que o tipo de suporte utilizado influencia na distribuição de produtos, principalmente a baixas temperaturas. Além disso, constatou-se que a descarbonilação não é uma reação sensível à estrutura do catalisador. Verificou-se também a presença de resíduos sobre os catalisadores, possivelmente oriundos não somente da quebra da ligação C=O, mas também de reações de polimerização
Resumo:
O biodiesel é definido como um mono alquil éster de ácidos graxos de cadeia longa derivado de fontes renováveis tais como óleos vegetais e gorduras animais. Sua importância esta associada ao uso como um combustível alternativo para motores do ciclo Diesel podendo ser utilizado puro ou em misturas com o diesel representando economia de petróleo e menor poluição ambiental. Em geral é obtido por meio da reação de transesterificação na qual os triacilgliceróis, principais constituintes dos óleos e gorduras reagem com álcool, em presença de um catalisador ácido ou básico, produzindo ésteres de ácidos graxos e glicerol. A transesterificação pode ser conduzida por catálise homogênea ou heterogênea. O grande desafio da indústria é otimizar o processo a fim de alcançar um produto e uma rota de produção tecnologicamente eficiente e ambientalmente correta. O objetivo desta pesquisa foi estudar a síntese do biodiesel utilizando o processo de transesterificação do óleo de girassol por catálises homogênea e heterogênea. Foram realizadas reações de transesterificação via rotas metílica e etílica, empregando como catalisador homogêneo alcóxido de potássio e como catalisador heterogêneo a resina comercial de troca iônica Amberlyst 26
Resumo:
Atualmente, existe um crescente interesse por fontes de energia renováveis e o desenvolvimento de novas tecnologias para a produção de biocombustíveis. O biodiesel é uma fonte alternativa de combustível bastante atrativa em relação ao diesel em decorrência de seus benefícios ambientais. A obtenção de biodiesel é geralmente realizada através de reações de transesterificação de óleos vegetais com álcool de cadeia curta. Entretanto, também se pode produzi-lo através da esterificação de ácidos graxos livres utilizando-se matérias-primas de baixa qualidade como rejeitos industriais, domésticos ou gorduras animais. O estudo de catalisadores que melhorem os resultados destas reações tem importante papel no desenvolvimento da produção de biodiesel. Normalmente, utilizam-se catalisadores básicos como o NaOH, nas reações de transesterificação. No entanto, o uso destes catalisadores causa impactos ambientais, além de promover a reação de saponificação quando a matéria-prima apresenta teores significativos de acidez, reduzindo o rendimento e dificultando a separação de fases. Este trabalho apresenta o estudo de catalisadores ácidos, à base de estanho, com ênfase especial no sulfato de estanho II, voltados para utilização na reação de esterificação de cargas contendo elevados teores em ácidos graxos. Avaliou-se a influência das variáveis: temperatura, concentração do catalisador, tipo de sistema reacional, quantidade de etanol, tipo de álcool, acidez, natureza dos ácidos graxos e temperatura de calcinação. Uma comparação entre os catalisadores, a questão da reutilização do catalisador e das mudanças proporcionadas pelo tratamento térmico ao qual foram submetidos também foram analisadas. Dentre os catalisadores estudados, os de sulfato de estanho mostraram maior atividade catalítica frente à reação estudada, os mais promissores sendo os calcinados até a temperatura de 500C. O principal motivo para os altos rendimentos encontrados foi associado ao comportamento pseudo-homogêneo do SnSO4, que se solubiliza, acidificando o meio reacional durante as reações de esterificação
Resumo:
A matriz energética mundial é baseada em fontes fósseis e renováveis. No Brasil, o bioetanol é gerado principalmente a partir da cana-de-açúcar. Resíduos agroindustriais (fontes celulósicas ou amiláceas) despontam como biomassas alternativas à cana-de-açúcar, para aumentar a competitividade deste combustível renovável frente aos de origem fóssil e também favorecer a sustentabilidade e a segurança alimentar e energética, pois são ricos em polissacarídeos não diretamente fermentescíveis, abundantes (problema ambiental) e apresentam baixo valor comercial. O farelo de mandioca é um exemplo de resíduo sólido gerado na produção de fécula (amido) e farinha de mandioca que ainda contém, em média, 75% de amido. Consequentemente, deve ser previamente hidrolisado e posteriormente fermentado por leveduras do gênero Saccharomyces para gerar etanol. O objetivo deste estudo foi produzir bioetanol a partir de hidrolisados enzimáticos de farelo de mandioca, usando levedura álcool resistente (AR). Primeiramente, a concentração de açúcares obtida a partir da hidrólise enzimática foi verificada através de um planejamento fatorial completo (24), com triplicata no ponto central, a fim de investigar a influência dos seguintes fatores na hidrólise: concentração de α-amilase (Termamyl 2X), tempo de liquefação, concentração de glucoamilase (AMG 300L) e o tempo sacarificação. A condição de hidrólise mais favorável foi a do ensaio com 0,517 mL de AMG/g amido, 0,270 mL de Termamyl/g amido, 1h de tempo de liquefação e 2h de tempo de sacarificação. O caldo resultante da condição escolhida alcançou altas concentrações de glicose (160 g/L). Os ensaios de fermentação alcoólica foram realizados em duplicata em biorreator de 3L, em regime de batelada, a 30C, 100 rpm e pH 5,5. Cerca de 3 g/L (massa seca) de uma linhagem de levedura álcool tolerante, Saccharomyces cerevisiae Hansen BY4741, crescida por 12h em meio YEDP (2% de glicose) foram usados como inóculo. O mosto consistiu de um litro de hidrolisado (160 g/L de glicose) fortificado com extrato de levedura (1%) e peptona de carne (1%), além da adição de um antiespumante (Tween 80) na concentração de 0,05% (m/v). Em 30 horas de fermentação, a média da concentração de etanol obtida foi de 65 g/L. A eficiência foi de 87,6% e o rendimento e a produtividade foram 0,448 e 2,16 g/L.h, respectivamente. Os resultados indicaram a aplicabilidade do farelo de mandioca como matéria-prima para a produção de bioetanol
Resumo:
A contaminação de ambientes aquáticos decorrente de acidentes com gasolina, álcool combustível e misturas binárias representa um risco crescente, tendo em vista as projeções do setor para os próximos 50 anos. O objetivo do presente estudo foi avaliar a toxicidade aguda da Gasolina C, Gasolina P e álcool combustível isoladamente e em misturas binárias, assim como de suas respectivas Frações Solúveis em Água (FSA) e Frações Dispersas em Água (FDA) sobre Daphnia similis. O estudo ainda incluiu a avaliação da toxicidade aguda remanescente na matriz água de uma contaminação antiga (intemperismo) com a Gasolina C. Paralelamente, foram conduzidos ensaios de toxicidade aguda com amostras ambientais (água subterrânea, superficial e elutriato a partir de sedimentos) de uma área alagada com histórico de contaminação antiga. O cultivo e os ensaios com D. similis foram de acordo com a NBR 12.713 (2009). Tanto a gasolina C quanto a P foram extremamente tóxicas para os organismos, apresentando valores médios de CE50% em 48 h de 0,00113% e 0,058% respectivamente. As diferenças entre os resultados obtidos com a Gasolina C e aqueles obtidos com suas frações FSA e FDA foram significativas (p < 0,05), sendo que não houve diferença significativa entre a toxicidade aguda da FSA e da FDA (p < 0,05). Os resultados obtidos com os ensaios com Gasolina P e FDA não apresentaram diferenças significativas entre si (p < 0,05), mas, foram significativamente diferentes daqueles obtidos com FSA (p < 0,05). Os resultados dos ensaios de toxicidade aguda com misturas binárias sugeriram efeito menos que aditivo (antagonismo). Os resultados da simulação de uma contaminação antiga demonstraram redução acentuada da toxicidade para D. similis ao longo de apenas 28 dias. Entretanto, com relação aos ensaios com as amostras ambientais da área com histórico de contaminação, apesar da ausência ou baixa toxicidade nas amostras de água superficial (sugerindo intemperismo), toxicidade alta foi observada em amostras de água subterrânea e no elutriato de sedimentos, sugerindo condições de adsorção aos sedimentos com alto teor de argila e/ou aprisionamento dos compostos em zona saturada.
Resumo:
A crescente preocupação com a preservação do meio ambiente aliada às perspectivas de esgotamento das fontes de energia obtidas dos combustíveis fósseis tem impulsionado a indústria a desenvolver combustíveis alternativos a partir de recursos renováveis e processos ambientalmente não agressivos. O biodiesel, uma mistura de ésteres de ácidos graxos obtida pela transesterificação catalítica de óleos vegetais com álcoois de cadeia curta (metanol ou etanol) é um combustível alternativo importante, pelo fato das suas propriedades (índice de cetano, conteúdo energético e viscosidade) serem similares às do diesel obtido a partir do petróleo. No presente trabalho, a transesterificação do óleo de soja com metanol para a produção de biodiesel foi estudada em presença de catalisadores sólidos à base de Mg/La e Al/La com propriedades ácido-básicas. Catalisadores de Mg/La com uma relação molar Mg/La igual a 9:1 foram preparados por coprecipitação utilizando três métodos que se diferenciavam quanto ao tipo de agente precipitante e a temperatura de calcinação. O catalisador preparado com (NH4)2CO3/NH4OH como agente precipitante e calcinado a 450 C apresentou as melhores características físico-químicas e catalíticas. Catalisadores à base de Mg/La e Al/La com diferentes composições químicas foram sintetizados nas condições de preparo selecionadas. O comportamento catalítico destes materiais foi investigado frente à reação de transesterificação do óleo de soja com metanol. O catalisador de Al/La com uma relação molar Al/La igual a 9:1 mostrou o melhor desempenho catalítico (rendimento em ésteres metílicos igual a 84 % a 180 C) e pode ser reutilizado por pelo menos três ciclos de reação. Também foram realizados testes catalíticos na presença do óleo de soja com 10 % de ácido oleico verificando-se que os catalisadores utilizados possuem sítios capazes de catalisar as reações de transesterificação e esterificação
Resumo:
Biodiesel é um biocombustível que consiste na mistura de ésteres monoalquílicos de ácidos graxos de cadeia longa. O processo usual de produção deste combustível é a transesterificação de óleos vegetais com álcoois de cadeia curta. Nesse processo, a matéria prima deve conter baixo conteúdo de ácido graxos livres ( ≤ 1%) e água (≤ 0,5%). Como alternativa ao processo de transesterificação, destaca-se o emprego de matérias-primas de baixo custo, com elevado teor de ácidos graxos livres, para a síntese de ésteres alquílicos através de reações de esterificação. As reações de produção do biodiesel podem ser catalisadas por via química (ácida e básica) ou enzimática. Na catálise enzimática, os biocatalisadores empregados são as lipases, que catalisam a hidrólise e síntese de ésteres e podem ser obtidas a partir de microrganismos, plantas ou tecido animal, sendo as de origem microbiana as mais utilizadas. O objetivo principal deste trabalho foi avaliar o potencial da lipase de Yarrowia lipolytica, uma levedura não convencional, na síntese de ésteres do ácido oleico visando à obtenção de ésteres alquílicos (biodiesel). Foram estudados os efeitos da temperatura (25, 30, 35, 40, 50 e 60oC), do teor enzimático (5, 10, 20, 30 e 40% v/v) e do tipo de álcool (metanol, etanol, n-propanol e n-butanol ) nas reações de esterificação do ácido oleico empregando o extrato enzimático líquido produzido por Yarrowia lipolytica. Os resultados obtidos mostraram que as reações conduzidas a 30oC e com 10% v/v do extrato enzimático apresentaram maior taxa inicial de reação. Também foi avaliada a utilização do extrato enzimático liofilizado (5% m/v) e do PES (produto enzimático sólido) (5% m/v) de Yarrowia lipolytica na reação de esterificação do ácido oleico com n-butanol a 30oC. O maior consumo de ácido oleico ocorreu na reação conduzida com o PES. O efeito da temperatura (25, 30, 35, 40 e 50oC) na síntese de oleato de butila foi, então, investigado nas reações empregando PES como biocatalisador e a maior conversão de ácido oleico foi verificada na temperatura de 40oC
Análise do mercado sucroalcooleiro e das elasticidades preço e renda da demanda por etanol hidratado
Resumo:
Este trabalho tem como objetivo estudar o mercado de etanol combustível e estimar as elasticidades preço e renda da demanda de etanol hidratado, no Brasil, no período de janeiro de 2003 a setembro de 2012. O método econométrico utilizado para analisar os dados e obter os resultados referentes à estimativa dos parâmetros das equações de demanda foi a metodologia de Johansen. Baseado na teoria da demanda incluiu-se, num primeiro momento, como variáveis explicativas: o preço do bem, o preço do bem substituto e a renda, num segundo momento incluiu-se também a frota de veículos, estimando assim o modelo VAR/VEC. Os resultados encontrados foram significativos e estão de acordo com a teoria econômica, nos levando a concluir que a demanda por etanol é bem elástica ao preço do etanol e ao preço da gasolina. Antes de desenvolvermos o modelo, analisamos o mercado de cana-de-açúcar, de etanol e da commodity concorrente ao etanol, o açúcar. Destacando a preocupação com o meio ambiente e a importância do etanol como energia renovável.