2 resultados para differential recursive scheme
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
As análises de erros são conduzidas antes de qualquer projeto a ser desenvolvido. A necessidade do conhecimento do comportamento do erro numérico em malhas estruturadas e não-estruturadas surge com o aumento do uso destas malhas nos métodos de discretização. Desta forma, o objetivo deste trabalho foi criar uma metodologia para analisar os erros de discretização gerados através do truncamento na Série de Taylor, aplicados às equações de Poisson e de Advecção-Difusão estacionárias uni e bidimensionais, utilizando-se o Método de Volumes Finitos em malhas do tipo Voronoi. A escolha dessas equações se dá devido a sua grande utilização em testes de novos modelos matemáticos e função de interpolação. Foram usados os esquemas Central Difference Scheme (CDS) e Upwind Difference Scheme(UDS) nos termos advectivos. Verificou-se a influência do tipo de condição de contorno e a posição do ponto gerador do volume na solução numérica. Os resultados analíticos foram confrontados com resultados experimentais para dois tipos de malhas de Voronoi, uma malha cartesiana e outra triangular comprovando a influência da forma do volume finito na solução numérica obtida. Foi percebido no estudo que a discretização usando o esquema CDS tem erros menores do que a discretização usando o esquema UDS conforme literatura. Também se percebe a diferença nos erros em volumes vizinhos nas malhas triangulares o que faz com que não se tenha uma uniformidade nos gráficos dos erros estudados. Percebeu-se que as malhas cartesianas com nó no centróide do volume tem menor erro de discretização do que malhas triangulares. Mas o uso deste tipo de malha depende da geometria do problema estudado
Resumo:
Neste trabalho o processo não linear de transmissão de calor condução-radiação é abordado num contexto bidimensional plano e simulado com o uso de um esquema linear em diferenças finitas. O problema original é tratado como o limite de uma sequencia de problemas lineares, do tipo condução-convecção. Este limite, cuja existência é comprovada, é facilmente obtido a partir de procedimentos básicos, accessíveis a qualquer estudante de engenharia, permitindo assim o emprego de hipóteses mais realistas, já que não se tem o limitante matemático para a abordagem numérica de uma equação diferencial parcial elíptica. Neste trabalho foi resolvido o problema de condução de calor em regime permanente em uma placa com condições de contorno convectivas e radioativas utilizando-se o software MatLab, vale ressaltar, que a mesma metodologia é aplicável para geometrias mais complexas.