2 resultados para advective
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
As análises de erros são conduzidas antes de qualquer projeto a ser desenvolvido. A necessidade do conhecimento do comportamento do erro numérico em malhas estruturadas e não-estruturadas surge com o aumento do uso destas malhas nos métodos de discretização. Desta forma, o objetivo deste trabalho foi criar uma metodologia para analisar os erros de discretização gerados através do truncamento na Série de Taylor, aplicados às equações de Poisson e de Advecção-Difusão estacionárias uni e bidimensionais, utilizando-se o Método de Volumes Finitos em malhas do tipo Voronoi. A escolha dessas equações se dá devido a sua grande utilização em testes de novos modelos matemáticos e função de interpolação. Foram usados os esquemas Central Difference Scheme (CDS) e Upwind Difference Scheme(UDS) nos termos advectivos. Verificou-se a influência do tipo de condição de contorno e a posição do ponto gerador do volume na solução numérica. Os resultados analíticos foram confrontados com resultados experimentais para dois tipos de malhas de Voronoi, uma malha cartesiana e outra triangular comprovando a influência da forma do volume finito na solução numérica obtida. Foi percebido no estudo que a discretização usando o esquema CDS tem erros menores do que a discretização usando o esquema UDS conforme literatura. Também se percebe a diferença nos erros em volumes vizinhos nas malhas triangulares o que faz com que não se tenha uma uniformidade nos gráficos dos erros estudados. Percebeu-se que as malhas cartesianas com nó no centróide do volume tem menor erro de discretização do que malhas triangulares. Mas o uso deste tipo de malha depende da geometria do problema estudado
Resumo:
Em uma grande gama de problemas físicos, governados por equações diferenciais, muitas vezes é de interesse obter-se soluções para o regime transiente e, portanto, deve-se empregar técnicas de integração temporal. Uma primeira possibilidade seria a de aplicar-se métodos explícitos, devido à sua simplicidade e eficiência computacional. Entretanto, esses métodos frequentemente são somente condicionalmente estáveis e estão sujeitos a severas restrições na escolha do passo no tempo. Para problemas advectivos, governados por equações hiperbólicas, esta restrição é conhecida como a condição de Courant-Friedrichs-Lewy (CFL). Quando temse a necessidade de obter soluções numéricas para grandes períodos de tempo, ou quando o custo computacional a cada passo é elevado, esta condição torna-se um empecilho. A fim de contornar esta restrição, métodos implícitos, que são geralmente incondicionalmente estáveis, são utilizados. Neste trabalho, foram aplicadas algumas formulações implícitas para a integração temporal no método Smoothed Particle Hydrodynamics (SPH) de modo a possibilitar o uso de maiores incrementos de tempo e uma forte estabilidade no processo de marcha temporal. Devido ao alto custo computacional exigido pela busca das partículas a cada passo no tempo, esta implementação só será viável se forem aplicados algoritmos eficientes para o tipo de estrutura matricial considerada, tais como os métodos do subespaço de Krylov. Portanto, fez-se um estudo para a escolha apropriada dos métodos que mais se adequavam a este problema, sendo os escolhidos os métodos Bi-Conjugate Gradient (BiCG), o Bi-Conjugate Gradient Stabilized (BiCGSTAB) e o Quasi-Minimal Residual (QMR). Alguns problemas testes foram utilizados a fim de validar as soluções numéricas obtidas com a versão implícita do método SPH.