3 resultados para Two-Body Dirac Equation
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
Nós estudamos a competição entre a instabilidade de Pomeranchuk no canal de spin com momento angular l=1 e uma interação atrativa, favorecendo a formação de um par de Cooper. Achamos, numa aproximação de campo médio, uma forte supressão da instabilidade de Pomeranchuk via supercondutividade. Além disso, identificamos uma fase supercondutora metaestável com características semelhantes ao estado FFLO. Um líquido de Fermi é, com exceção de uma dimensão, um estado muito estável da matéria. Por outro lado dois tipos de instabilidades, relacionadas com interações atrativas, são conhecidas: Instabilidades Pomeranchuk e supercondutora. As instabilidades Pomeranchuk ocorrem na presença da interação de dois corpos contendo uma forte componente atrativa no canal de espalhamento para frente com momento angular definido. No contexto da teoria de Landau, a instabilidade ocorre quando um ou mais parâmetros admensionais de Landau nos canais de spin ou carga, adquirem altos valores negativos. As instabilidades Pomeranchuk no setor de carga quebram a simetria de rotação. Em particular, uma instabilidade em alguns canais produz uma deformação elipsoidal na superfície de Fermi.
Resumo:
A possibilidade da existência de átomos de hidrogênio estáveis em dimensões superiores a três é abordada. O problema da dimensionalidade é visto como um problema de Física, no qual relacionam-se algumas leis físicas com a dimensão espacial. A base da análise deste trabalho faz uso das equações de Schrödinger (não relativística) e de Dirac (relativística). Nos dois casos, utiliza-se a generalização tanto do setor cinemático bem como o setor de interação coulombiana para variar o parâmetro topológico dimensão. Para o caso não relativístico, os auto-valores de energia e as auto-funções são obtidas através do método numérico de Numerov. Embora existam soluções em espaços com dimensões superiores, os resultados obtidos no presente trabalho indicam que a natureza deve, de alguma maneira, se manifestar em um espaço tridimensional.
Resumo:
Um grande desafio da atualidade é a preservação dos recursos hídricos, bem como o correto manejo dos mesmos, frente à expansão das cidades e às atividades humanas. A qualidade de um corpo hídrico é usualmente avaliada através da análise de parâmetros biológicos, físicos e químicos. O comportamento de tais parâmetros pode convenientemente ser simulado através de modelos matemáticos e computacionais, que surgem assim como uma ferramenta bastante útil, por sua capacidade de geração de cenários que possam embasar, por exemplo, tomadas de decisão. Nesta tese são discutidas técnicas de estimação da localização e intensidade de uma fonte de contaminante conservativo, hipoteticamente lançado na região predominantemente fluvial de um estuário. O lançamento aqui considerado se dá de forma pontual e contínua e a região enfocada compreendeu o estuário do Rio Macaé, localizado na costa norte do Rio de Janeiro. O trabalho compreende a solução de um problema direto, que consiste no transporte bidimensional (integrado na vertical) desse contaminante hipotético, bem como a aplicação de técnicas de problemas inversos. Para a solução do transporte do contaminante, aqui modelada pela versão 2D horizontal da equação de advecção-difusão, foram utilizados como métodos de discretização o Método de Elementos Finitos e o Método de Diferenças Finitas. Para o problema hidrodinâmico foram utilizados dados de uma solução já desenvolvida para estuário do Rio Macaé. Analisada a malha de acordo com o método de discretização, foram definidas a geometria do estuário e os parâmetros hidrodinâmicos e de transporte. Para a estimação dos parâmetros propostos foi utilizada a técnica de problemas inversos, com o uso dos métodos Luus-Jaakola, Algoritmo de Colisão de Partículas e Otimização por Colônia de Formigas para a estimação da localização e do método Seção Áurea para a estimação do parâmetro de intensidade da fonte. Para a definição de uma fonte, com o objetivo de propor um cenário experimental idealizado e de coleta de dados de amostragem, foi realizada a análise de sensibilidade quanto aos parâmetros a serem estimados. Como os dados de amostragem de concentração foram sintéticos, o problema inverso foi resolvido utilizando-os com e sem ruído, esse introduzido de forma artificial e aleatória. Sem o uso de ruído, os três métodos mostraram-se igualmente eficientes, com uma estimação precisa em 95% das execuções. Já com o uso de dados de amostragem com ruídos de 5%, o método Luus-Jaakola mostrou-se mais eficiente em esforço e custo computacional, embora todos tenham estimado precisamente a fonte em 80% das execuções. Considerando os resultados alcançados neste trabalho tem-se que é possível estimar uma fonte de constituintes, quanto à sua localização e intensidade, através da técnica de problemas inversos. Além disso, os métodos aplicados mostraram-se eficientes na estimação de tais parâmetros, com estimações precisas para a maioria de suas execuções. Sendo assim, o estudo do comportamento de contaminantes, e principalmente da identificação de fontes externas, torna-se uma importante ferramenta para a gestão dos recursos hídricos, possibilitando, inclusive, a identificação de possíveis responsáveis por passivos ambientais.