5 resultados para Truncation

em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ


Relevância:

10.00% 10.00%

Publicador:

Resumo:

As análises de erros são conduzidas antes de qualquer projeto a ser desenvolvido. A necessidade do conhecimento do comportamento do erro numérico em malhas estruturadas e não-estruturadas surge com o aumento do uso destas malhas nos métodos de discretização. Desta forma, o objetivo deste trabalho foi criar uma metodologia para analisar os erros de discretização gerados através do truncamento na Série de Taylor, aplicados às equações de Poisson e de Advecção-Difusão estacionárias uni e bidimensionais, utilizando-se o Método de Volumes Finitos em malhas do tipo Voronoi. A escolha dessas equações se dá devido a sua grande utilização em testes de novos modelos matemáticos e função de interpolação. Foram usados os esquemas Central Difference Scheme (CDS) e Upwind Difference Scheme(UDS) nos termos advectivos. Verificou-se a influência do tipo de condição de contorno e a posição do ponto gerador do volume na solução numérica. Os resultados analíticos foram confrontados com resultados experimentais para dois tipos de malhas de Voronoi, uma malha cartesiana e outra triangular comprovando a influência da forma do volume finito na solução numérica obtida. Foi percebido no estudo que a discretização usando o esquema CDS tem erros menores do que a discretização usando o esquema UDS conforme literatura. Também se percebe a diferença nos erros em volumes vizinhos nas malhas triangulares o que faz com que não se tenha uma uniformidade nos gráficos dos erros estudados. Percebeu-se que as malhas cartesianas com nó no centróide do volume tem menor erro de discretização do que malhas triangulares. Mas o uso deste tipo de malha depende da geometria do problema estudado

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Um método de matriz resposta (RM) é descrito para gerar soluções numéricas livres de erros de truncamento espacial para problemas de transporte de nêutrons monoenergéticos e com fonte fixa, em geometria unidimensional na formulação de ordenadas discretas (SN). O método RM com esquema iterativo de inversão parcial por região (RBI) converge valores numéricos para os fluxos angulares nas fronteiras das regiões que coincidem com os valores da solução analítica das equações SN, afora os erros de arredondamento da aritmética finita computacional. Desenvolvemos um esquema numérico de reconstrução espacial, que fornece a saída para os fluxos escalares de nêutrons em qualquer ponto do domínio definido pelo usuário, com um passo de avanço também escolhido pelo usuário. Resultados numéricos são apresentados para ilustrar a precisão do presente método em cálculos de malha grossa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Um método numérico nodal livre de erros de truncamento espacial é desenvolvido para problemas adjuntos de transporte de partículas neutras monoenergéticas em geometria unidimensional com fonte fixa na formulação de ordenadas discretas (SN). As incógnitas no método são os fluxos angulares adjuntos médios nos nodos e os fluxos angulares adjuntos nas fronteiras dos nodos, e os valores numéricos gerados para essas quantidades são os obtidos a partir da solução analítica das equações SN adjuntas. O método é fundamentado no uso da convencional equação adjunta SN discretizada de balanço espacial, que é válida para cada nodo de discretização espacial e para cada direção discreta da quadratura angular, e de uma equação auxiliar adjunta não convencional, que contém uma função de Green para os fluxos angulares adjuntos médios nos nodos em termos dos fluxos angulares adjuntos emergentes das fronteiras dos nodos e da fonte adjunta interior. Resultados numéricos são fornecidos para ilustrarem a precisão do método proposto.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Um método espectronodal é desenvolvido para problemas de transporte de partículas neutras de fonte fixa, multigrupo de energia em geometria cartesiana na formulação de ordenadas discretas (SN). Para geometria unidimensional o método espectronodal multigrupo denomina-se método spectral Greens function (SGF) com o esquema de inversão nodal (NBI) que converge solução numérica para problemas SN multigrupo em geometria unidimensional, que são completamente livre de erros de truncamento espacial para ordem L de anisotropia de espalhamento desde que L < N. Para geometria X; Y o método espectronodal multigrupo baseia-se em integrações transversais das equações SN no interior dos nodos de discretização espacial, separadamente nas direções coordenadas x e y. Já que os termos de fuga transversal são aproximados por constantes, o método nodal resultante denomina-se SGF-constant nodal (SGF-CN), que é aplicado a problemas SN multigrupo de fonte fixa em geometria X; Y com espalhamento isotrópico. Resultados numéricos são apresentados para ilustrar a eficiência dos códigos SGF e SGF-CN e a precisão das soluções numéricas convergidas em cálculos de malha grossa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nesta dissertação, são apresentados os seguintes modelos matemáticos de transporte de nêutrons: a equação linearizada de Boltzmann e a equação da difusão de nêutrons monoenergéticos em meios não-multiplicativos. Com o objetivo de determinar o período fluxo escalar de nêutrons, é descrito um método espectronodal que gera soluções numéricas para o problema de difusão em geometria planar de fonte fixa, que são livres de erros de truncamento espacial, e que conjugado com uma técnica de reconstrução espacial intranodal gera o perfil detalhado da solução. A fim de obter o valor aproximado do fluxo angular de nêutrons em um determinado ponto do domínio e em uma determinada direção de migração, descreve-se também um método de reconstrução angular baseado na solução analítica da equação unidimensional de transporte de nêutrons monoenergéticos com espalhamento linearmente anisotrópico com aproximação sintética de difusão nos termos de fonte por espalhamento. O código computacional desenvolvido nesta dissertação foi implementado na plataforma livre Scilab, e para ilustrar a eficiência do código criado,resultados numéricos obtidos para três problemas-modelos são apresentados