5 resultados para SVM
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
Este trabalho de pesquisa descreve dois estudos de caso de métodos quimiométricos empregados para a quantificação de hidrocarbonetos policíclicos aromáticos HPAs (naftaleno, fluoreno, fenantreno e fluoranteno) em água potável usando espectroscopia de fluorescência molecular e a classificação e caracterização de sucos de uva e seus parâmetros de qualidade através de espectroscopia de infravermelho próximo. O objetivo do primeiro estudo é a aplicação combinada de métodos quimiométricos de segunda ordem (N-PLS, U-PLS, U-PLS/RBL e PARAFAC) e espectrofluorimetria para determinação direta de HPAs em água potável, visando contribuir para o conhecimento do potencial destas metodologias como alternativa viável para a determinação tradicional por cromatografia univariada. O segundo estudo de caso destinado à classificação e determinação de parâmetros de qualidade de sucos de uva, densidade relativa e teor de sólidos solúveis totais, foi medida por espectroscopia de infravermelho próximo e métodos quimiométricos. Diversos métodos quimiométricos, tais como HCA, PLS-DA, SVM-DA e SIMCA foram investigados para a classificação amostras de sucos de uva ao mesmo tempo que métodos de calibração multivariada de primeira ordem, tais como PLS, iPLS e SVM-LS foram usadas para a predição dos parâmetros de qualidade. O princípio orientador para o desenvolvimento dos estudos aqui descritos foi a necessidade de metodologias analíticas com custo, tempo de execução e facilidade de operação melhores e menor produção de resíduos do que os métodos atualmente utilizados para a quantificação de HPAs, em água de torneira, e classificação e caracterização das amostras de suco de uva e seus parâmetros de qualidade
Resumo:
Este trabalho de pesquisa descreve três estudos de utilização de métodos quimiométricos para a classificação e caracterização de óleos comestíveis vegetais e seus parâmetros de qualidade através das técnicas de espectrometria de absorção molecular no infravermelho médio com transformada de Fourier e de espectrometria no infravermelho próximo, e o monitoramento da qualidade e estabilidade oxidativa do iogurte usando espectrometria de fluorescência molecular. O primeiro e segundo estudos visam à classificação e caracterização de parâmetros de qualidade de óleos comestíveis vegetais utilizando espectrometria no infravermelho médio com transformada de Fourier (FT-MIR) e no infravermelho próximo (NIR). O algoritmo de Kennard-Stone foi usado para a seleção do conjunto de validação após análise de componentes principais (PCA). A discriminação entre os óleos de canola, girassol, milho e soja foi investigada usando SVM-DA, SIMCA e PLS-DA. A predição dos parâmetros de qualidade, índice de refração e densidade relativa dos óleos, foi investigada usando os métodos de calibração multivariada dos mínimos quadrados parciais (PLS), iPLS e SVM para os dados de FT-MIR e NIR. Vários tipos de pré-processamentos, primeira derivada, correção do sinal multiplicativo (MSC), dados centrados na média, correção do sinal ortogonal (OSC) e variação normal padrão (SNV) foram utilizados, usando a raiz quadrada do erro médio quadrático de validação cruzada (RMSECV) e de predição (RMSEP) como parâmetros de avaliação. A metodologia desenvolvida para determinação de índice de refração e densidade relativa e classificação dos óleos vegetais é rápida e direta. O terceiro estudo visa à avaliação da estabilidade oxidativa e qualidade do iogurte armazenado a 4C submetido à luz direta e mantido no escuro, usando a análise dos fatores paralelos (PARAFAC) na luminescência exibida por três fluoróforos presentes no iogurte, onde pelo menos um deles está fortemente relacionado com as condições de armazenamento. O sinal fluorescente foi identificado pelo espectro de emissão e excitação das substâncias fluorescentes puras, que foram sugeridas serem vitamina A, triptofano e riboflavina. Modelos de regressão baseados nos escores do PARAFAC para a riboflavina foram desenvolvidos usando os escores obtidos no primeiro dia como variável dependente e os escores obtidos durante o armazenamento como variável independente. Foi visível o decaimento da curva analítica com o decurso do tempo da experimentação. Portanto, o teor de riboflavina pode ser considerado um bom indicador para a estabilidade do iogurte. Assim, é possível concluir que a espectroscopia de fluorescência combinada com métodos quimiométricos é um método rápido para monitorar a estabilidade oxidativa e a qualidade do iogurte
Resumo:
Esse trabalho compreende dois diferentes estudos de caso: o primeiro foi a respeito de um medicamento para o qual foi desenvolvida uma metodologia para determinar norfloxacino (NOR) por espectrofluorimetria molecular e validação por HPLC. Primeiramente foi desenvolvida uma metodologia por espectrofluorimetria onde foram feitos alguns testes preliminares a fim de estabelecer qual valor de pH iria fornecer a maior intensidade de emissão. Após fixar o pH foi feita a determinação de NOR em padrões aquosos e soluções do medicamento usando calibração univariada. A faixa de concentração trabalhada foi de 0500 μg.L-1. O limite de detecção para o medicamento foi de 6,9 μg.L-1 enquanto que o de quantificação foi de 24,6 μg.L-1. Além dessas, outras figuras de mérito também foram estimadas para desenvolvimento da metodologia e obtiveram resultados muito satisfatórios, como por exemplo, os testes de recuperação no qual a recuperação do analito foi de 99.5 a 103.8%. Para identificação e quantificação do NOR da urina foi necessário diluir a amostra de urina (estudada em dois diferentes níveis de diluição: 500 e 1000 x) e também uso do método da adição de padrão (na mesma faixa de concentração usada para medicamento). Após a aquisição do espectro, todos foram usados para construção do tensor que seria usado no PARAFAC. Foi possível estimar as figuras de mérito como limite de detecção de 11.4 μg.L-1 and 8.4 μg.L-1 (diluição de 500 e 1000 x respectivamente) e limite de quantificação de 34 μg.L-1 e 25.6 μg.L-1 (diluição de 500 x e 1000 x respectivamente). O segundo estudo de caso foi na área alimentícia no qual se usou espectroscopia NIR e FT MIR acopladas a quimiometria para discriminar óleo de soja transgênica e não transgênica. Os espectros dos óleos não mostraram diferença significativa em termos visuais, sendo necessário usar ferramentas quimiométricas capazes de fazer essa distinção. Tanto para espectroscopia NIR quanto FT MIR foi feito o PCA a fim de identificar amostras discrepantes e que influenciariam o modelo de forma negativa. Após efetuar o PCA, foram usadas três diferentes técnicas para discriminar os óleos: SIMCA, SVM-DA e PLS-DA, sendo que para cada técnica foram usados também diferentes pré processamento. No NIR, apenas para um pré processamento se obteve resultados satisfatórios nas três técnicas, enquanto que para FT-MIR ao se usar PLS-DA se obteve 100% de acerto na classificação para todos os pré processamentos
Resumo:
O biodiesel tem sido amplamente utilizado como uma fonte de energia renovável, que contribui para a diminuição de demanda por diesel mineral. Portanto, existem várias propriedades que devem ser monitoradas, a fim de produzir e distribuir biodiesel com a qualidade exigida. Neste trabalho, as propriedades físicas do biodiesel, tais como massa específica, índice de refração e ponto de entupimento de filtro a frio foram medidas e associadas a espectrometria no infravermelho próximo (NIR) e espectrometria no infravermelho médio (Mid-IR) utilizando ferramentas quimiométricas. Os métodos de regressão por mínimos quadrados parciais (PLS), regressão de mínimos quadrados parciais por intervalos (iPLS), e regressão por máquinas de vetor de suporte (SVM) com seleção de variáveis por Algoritmo Genético (GA) foram utilizadas para modelar as propriedades mencionadas. As amostras de biodiesel foram sintetizadas a partir de diferentes fontes, tais como canola, girassol, milho e soja. Amostras adicionais de biodiesel foram adquiridas de um fornecedor da região sul do Brasil. Em primeiro lugar, o pré-processamento de correção de linha de base foi usado para normalizar os dados espectrais de NIR, seguidos de outros tipos de pré-processamentos que foram aplicados, tais como centralização dos dados na média, 1 derivada e variação de padrão normal. O melhor resultado para a previsão do ponto de entupimento de filtro a frio foi utilizando os espectros de Mid-IR e o método de regressão GA-SVM, com alto coeficiente de determinação da previsão, R2Pred=0,96 e baixo valor da Raiz Quadrada do Erro Médio Quadrático da previsão, RMSEP (C)= 0,6. Para o modelo de previsão da massa específica, o melhor resultado foi obtido utilizando os espectros de Mid-IR e regressão por PLS, com R2Pred=0,98 e RMSEP (g/cm3)= 0,0002. Quanto ao modelo de previsão para o índice de refração, o melhor resultado foi obtido utilizando os espectros de Mid-IR e regressão por PLS, com excelente R2Pred=0,98 e RMSEP= 0,0001. Para esses conjuntos de dados, o PLS e o SVM demonstraram sua robustez, apresentando-se como ferramentas úteis para a previsão das propriedades do biodiesel estudadas
Resumo:
Com cada vez mais intenso desenvolvimento urbano e industrial, atualmente um desafio fundamental é eliminar ou reduzir o impacto causado pelas emissões de poluentes para a atmosfera. No ano de 2012, o Rio de Janeiro sediou a Rio +20, a Conferência das Nações Unidas sobre Desenvolvimento Sustentável, onde representantes de todo o mundo participaram. Na época, entre outros assuntos foram discutidos a economia verde e o desenvolvimento sustentável. O O3 troposférico apresenta-se como uma variável extremamente importante devido ao seu forte impacto ambiental, e conhecer o comportamento dos parâmetros que afetam a qualidade do ar de uma região, é útil para prever cenários. A química das ciências atmosféricas e meteorologia são altamente não lineares e, assim, as previsões de parâmetros de qualidade do ar são difíceis de serem determinadas. A qualidade do ar depende de emissões, de meteorologia e topografia. Os dados observados foram o dióxido de nitrogênio (NO2), monóxido de nitrogênio (NO), óxidos de nitrogênio (NOx), monóxido de carbono (CO), ozônio (O3), velocidade escalar vento (VEV), radiação solar global (RSG), temperatura (TEM), umidade relativa (UR) e foram coletados através da estação móvel de monitoramento da Secretaria do Meio Ambiente (SMAC) do Rio de Janeiro em dois locais na área metropolitana, na Pontifícia Universidade Católica (PUC-Rio) e na Universidade do Estado do Rio de Janeiro (UERJ) no ano de 2011 e 2012. Este estudo teve três objetivos: (1) analisar o comportamento das variáveis, utilizando o método de análise de componentes principais (PCA) de análise exploratória, (2) propor previsões de níveis de O3 a partir de poluentes primários e de fatores meteorológicos, comparando a eficácia dos métodos não lineares, como as redes neurais artificiais (ANN) e regressão por máquina de vetor de suporte (SVM-R), a partir de poluentes primários e de fatores meteorológicos e, finalmente, (3) realizar método de classificação de dados usando a classificação por máquina de vetor suporte (SVM-C). A técnica PCA mostrou que, para conjunto de dados da PUC as variáveis NO, NOx e VEV obtiveram um impacto maior sobre a concentração de O3 e o conjunto de dados da UERJ teve a TEM e a RSG como as variáveis mais importantes. Os resultados das técnicas de regressão não linear ANN e SVM obtidos foram muito próximos e aceitáveis para o conjunto de dados da UERJ apresentando coeficiente de determinação (R2) para a validação, 0,9122 e 0,9152 e Raiz Quadrada do Erro Médio Quadrático (RMECV) 7,66 e 7,85, respectivamente. Quanto aos conjuntos de dados PUC e PUC+UERJ, ambas as técnicas, obtiveram resultados menos satisfatórios. Para estes conjuntos de dados, a SVM mostrou resultados ligeiramente superiores, e PCA, SVM e ANN demonstraram sua robustez apresentando-se como ferramentas úteis para a compreensão, classificação e previsão de cenários da qualidade do ar