4 resultados para SOLUTION SCATTERING
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
O esquema iterativo de fonte de espalhamento (SI) é tradicionalmente aplicado para a convergência da solução numérica de malha fina para problemas de transporte de nêutrons monoenergéticos na formulação de ordenadas discretas com fonte fixa. O esquema SI é muito simples de se implementar sob o ponto de vista computacional; porém, o esquema SI pode apresentar taxa de convergência muito lenta, principalmente para meios difusivos (baixa absorção) com vários livres caminhos médios de extensão. Nesta dissertação descrevemos uma técnica de aceleração baseada na melhoria da estimativa inicial para a distribuição da fonte de espalhamento no interior do domínio de solução. Em outras palavras, usamos como estimativa inicial para o fluxo escalar médio na grade de discretização de malha fina, presentes nos termos da fonte de espalhamento das equações discretizadas SN usadas nas varreduras de transporte, a solução numérica da equação da difusão de nêutrons em grade espacial de malha grossa com condições de contorno especiais, que aproximam as condições de contorno prescritas que são clássicas em cálculos SN, incluindo condições de contorno do tipo vácuo. Para aplicarmos esta solução gerada pela equação da difusão em grade de discretização de malha grossa nas equações discretizadas SN de transporte na grade de discretização de malha fina, primeiro implementamos uma reconstrução espacial dentro de cada nodo de discretização, e então determinamos o fluxo escalar médio em grade de discretização de malha fina para usá-lo nos termos da fonte de espalhamento. Consideramos um número de experimentos numéricos para ilustrar a eficiência oferecida pela presente técnica (DSA) de aceleração sintética de difusão.
Resumo:
Nesta dissertação, são apresentados os seguintes modelos matemáticos de transporte de nêutrons: a equação linearizada de Boltzmann e a equação da difusão de nêutrons monoenergéticos em meios não-multiplicativos. Com o objetivo de determinar o período fluxo escalar de nêutrons, é descrito um método espectronodal que gera soluções numéricas para o problema de difusão em geometria planar de fonte fixa, que são livres de erros de truncamento espacial, e que conjugado com uma técnica de reconstrução espacial intranodal gera o perfil detalhado da solução. A fim de obter o valor aproximado do fluxo angular de nêutrons em um determinado ponto do domínio e em uma determinada direção de migração, descreve-se também um método de reconstrução angular baseado na solução analítica da equação unidimensional de transporte de nêutrons monoenergéticos com espalhamento linearmente anisotrópico com aproximação sintética de difusão nos termos de fonte por espalhamento. O código computacional desenvolvido nesta dissertação foi implementado na plataforma livre Scilab, e para ilustrar a eficiência do código criado,resultados numéricos obtidos para três problemas-modelos são apresentados
Resumo:
Esta tese apresenta um estudo sobre modelagem computacional onde são aplicadas meta-heurísticas de otimização na solução de problemas inversos de transferência radiativa em meios unidimensionais com albedo dependente da variável óptica, e meios unidimensionais de duas camadas onde o problema inverso é tratado como um problema de otimização. O trabalho aplica uma meta-heurística baseada em comportamentos da natureza conhecida como algoritmo dos vagalumes. Inicialmente, foram feitos estudos comparativos de desempenho com dois outros algoritmos estocásticos clássicos. Os resultados encontrados indicaram que a escolha do algoritmo dos vagalumes era apropriada. Em seguida, foram propostas outras estratégias que foram inseridas no algoritmo dos vagalumes canônico. Foi proposto um caso onde se testou e investigou todas as potenciais estratégias. As que apresentaram os melhores resultados foram, então, testadas em mais dois casos distintos. Todos os três casos testados foram em um ambiente de uma camada, com albedo de espalhamento dependente da posição espacial. As estratégias que apresentaram os resultados mais competitivos foram testadas em um meio de duas camadas. Para este novo cenário foram propostos cinco novos casos de testes. Os resultados obtidos, pelas novas variantes do algoritmo dos vagalumes, foram criticamente analisados.
Resumo:
Esta pesquisa consiste na solução do problema inverso de transferência radiativa para um meio participante (emissor, absorvedor e/ou espalhador) homogêneo unidimensional em uma camada, usando-se a combinação de rede neural artificial (RNA) com técnicas de otimização. A saída da RNA, devidamente treinada, apresenta os valores das propriedades radiativas [ω, τ0, ρ1 e ρ2] que são otimizadas através das seguintes técnicas: Particle Collision Algorithm (PCA), Algoritmos Genéticos (AG), Greedy Randomized Adaptive Search Procedure (GRASP) e Busca Tabu (BT). Os dados usados no treinamento da RNA são sintéticos, gerados através do problema direto sem a introdução de ruído. Os resultados obtidos unicamente pela RNA, apresentam um erro médio percentual menor que 1,64%, seria satisfatório, todavia para o tratamento usando-se as quatro técnicas de otimização citadas anteriormente, os resultados tornaram-se ainda melhores com erros percentuais menores que 0,04%, especialmente quando a otimização é feita por AG.