1 resultado para Refractive Errors
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
O objetivo deste trabalho foi estabelecer um modelo empregando-se ferramentas de regressão multivariada para a previsão do teor em ésteres metílicos e, simultaneamente, de propriedades físico-químicas de misturas de óleo de soja e biodiesel de soja. O modelo foi proposto a partir da correlação das propriedades de interesse com os espectros de reflectância total atenuada no infravermelho médio das misturas. Para a determinação dos teores de ésteres metílicos foi utilizada a cromatografia líquida de alta eficiência (HPLC), podendo esta ser uma técnica alternativa aos método de referência que utilizam a cromatografia em fase gasosa (EN 14103 e EN 14105). As propriedades físico-químicas selecionadas foram índice de refração, massa específica e viscosidade. Para o estudo, foram preparadas 11 misturas com diferentes proporções de biodiesel de soja e de óleo de soja (0-100 % em massa de biodiesel de soja), em quintuplicata, totalizando 55 amostras. A região do infravermelho estudada foi a faixa de 3801 a 650 cm-1. Os espectros foram submetidos aos pré-tratamentos de correção de sinal multiplicativo (MSC) e, em seguida, à centralização na média (MC). As propriedades de interesse foram submetidas ao autoescalamento. Em seguida foi aplicada análise de componentes principais (PCA) com a finalidade de reduzir a dimensionalidade dos dados e detectar a presença de valores anômalos. Quando estes foram detectados, a amostra era descartada. Os dados originais foram submetidos ao algoritmo de Kennard-Stone dividindo-os em um conjunto de calibração, para a construção do modelo, e um conjunto de validação, para verificar a sua confiabilidade. Os resultados mostraram que o modelo proposto por PLS2 (Mínimos Quadrados Parciais) foi capaz de se ajustar bem os dados de índice de refração e de massa específica, podendo ser observado um comportamento aleatório dos erros, indicando a presença de homocedasticidade nos valores residuais, em outras palavras, o modelo construído apresentou uma capacidade de previsão para as propriedades de massa específica e índice de refração com 95% de confiança. A exatidão do modelo foi também avaliada através da estimativa dos parâmetros de regressão que são a inclinação e o intercepto pela Região Conjunta da Elipse de Confiança (EJCR). Os resultados confirmaram que o modelo MIR-PLS desenvolvido foi capaz de prever, simultaneamente, as propriedades índice de refração e massa específica. Para os teores de éteres metílicos determinados por HPLC, foi também desenvolvido um modelo MIR-PLS para correlacionar estes valores com os espectros de MIR, porém a qualidade do ajuste não foi tão boa. Apesar disso, foi possível mostrar que os dados podem ser modelados e correlacionados com os espectros de infravermelho utilizando calibração multivariada