4 resultados para Particle motion
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
Neste trabalho, três técnicas para resolver numericamente problemas inversos de transporte de partículas neutras a uma velocidade para aplicações em engenharia nuclear são desenvolvidas. É fato conhecido que problemas diretos estacionários e monoenergéticos de transporte são caracterizados por estimar o fluxo de partículas como uma função-distribuição das variáveis independentes de espaço e de direção de movimento, quando os parâmetros materiais (seções de choque macroscópicas), a geometria, e o fluxo incidente nos contornos do domínio (condições de contorno), bem como a distribuição de fonte interior são conhecidos. Por outro lado, problemas inversos, neste trabalho, buscam estimativas para o fluxo incidente no contorno, ou a fonte interior, ou frações vazio em barras homogêneas. O modelo matemático usado tanto para os problemas diretos como para os problemas inversos é a equação de transporte independente do tempo, a uma velocidade, em geometria unidimensional e com o espalhamento linearmente anisotrópico na formulação de ordenadas discretas (SN). Nos problemas inversos de valor de contorno, dado o fluxo emergente em um extremo da barra, medido por um detector de nêutrons, por exemplo, buscamos uma estimativa precisa para o fluxo incidente no extremo oposto. Por outro lado, nos problemas inversos SN de fonte interior, buscamos uma estimativa precisa para a fonte armazenada no interior do domínio para fins de blindagem, sendo dado o fluxo emergente no contorno da barra. Além disso, nos problemas inversos SN de fração de vazio, dado o fluxo emergente em uma fronteira da barra devido ao fluxo incidente prescrito no extremo oposto, procuramos por uma estimativa precisa da fração de vazio no interior da barra, no contexto de ensaios não-destrutivos para aplicações na indústria. O código computacional desenvolvido neste trabalho apresenta o método espectronodal de malha grossa spectral Greens function (SGF) para os problemas diretos SN em geometria unidimensional para gerar soluções numéricas precisas para os três problemas inversos SN descritos acima. Para os problemas inversos SN de valor de contorno e de fonte interior, usamos a propriedade da proporcionalidade da fuga de partículas; ademais, para os problemas inversos SN de fração de vazio, oferecemos a técnica a qual nos referimos como o método físico da bissecção. Apresentamos resultados numéricos para ilustrar a precisão das três técnicas, conforme descrito nesta tese.
Resumo:
Neste trabalho, foi desenvolvido um simulador numérico baseado no método livre de malhas Smoothed Particle Hydrodynamics (SPH) para a resolução de escoamentos de fluidos newtonianos incompressíveis. Diferentemente da maioria das versões existentes deste método, o código numérico faz uso de uma técnica iterativa na determinação do campo de pressões. Este procedimento emprega a forma diferencial de uma equação de estado para um fluido compressível e a equação da continuidade a fim de que a correção da pressão seja determinada. Uma versão paralelizada do simulador numérico foi implementada usando a linguagem de programação C/C++ e a Compute Unified Device Architecture (CUDA) da NVIDIA Corporation. Foram simulados três problemas, o problema unidimensional do escoamento de Couette e os problemas bidimensionais do escoamento no interior de uma Cavidade (Shear Driven Cavity Problem) e da Quebra de Barragem (Dambreak).
Resumo:
Nesse trabalho, foi desenvolvido um simulador numérico (C/C++) para a resolução de escoamentos de fluidos newtonianos incompressíveis, baseado no método de partículas Lagrangiano, livre de malhas, Smoothed Particle Hydrodynamics (SPH). Tradicionalmente, duas estratégias são utilizadas na determinação do campo de pressões de forma a garantir-se a condição de incompressibilidade do fluido. A primeira delas é a formulação chamada Weak Compressible Smoothed Particle Hydrodynamics (WCSPH), onde uma equação de estado para um fluido quase-incompressível é utilizada na determinação do campo de pressões. A segunda, emprega o Método da Projeção e o campo de pressões é obtido mediante a resolução de uma equação de Poisson. No estudo aqui desenvolvido, propõe-se três métodos iterativos, baseados noMétodo da Projeção, para o cálculo do campo de pressões, Incompressible Smoothed Particle Hydrodynamics (ISPH). A fim de validar os métodos iterativos e o código computacional, foram simulados dois problemas unidimensionais: os escoamentos de Couette entre duas placas planas paralelas infinitas e de Poiseuille em um duto infinito e foram usadas condições de contorno do tipo periódicas e partículas fantasmas. Um problema bidimensional, o escoamento no interior de uma cavidade com a parede superior posta em movimento, também foi considerado. Na resolução deste problema foi utilizado o reposicionamento periódico de partículas e partículas fantasmas.
Resumo:
Em uma grande gama de problemas físicos, governados por equações diferenciais, muitas vezes é de interesse obter-se soluções para o regime transiente e, portanto, deve-se empregar técnicas de integração temporal. Uma primeira possibilidade seria a de aplicar-se métodos explícitos, devido à sua simplicidade e eficiência computacional. Entretanto, esses métodos frequentemente são somente condicionalmente estáveis e estão sujeitos a severas restrições na escolha do passo no tempo. Para problemas advectivos, governados por equações hiperbólicas, esta restrição é conhecida como a condição de Courant-Friedrichs-Lewy (CFL). Quando temse a necessidade de obter soluções numéricas para grandes períodos de tempo, ou quando o custo computacional a cada passo é elevado, esta condição torna-se um empecilho. A fim de contornar esta restrição, métodos implícitos, que são geralmente incondicionalmente estáveis, são utilizados. Neste trabalho, foram aplicadas algumas formulações implícitas para a integração temporal no método Smoothed Particle Hydrodynamics (SPH) de modo a possibilitar o uso de maiores incrementos de tempo e uma forte estabilidade no processo de marcha temporal. Devido ao alto custo computacional exigido pela busca das partículas a cada passo no tempo, esta implementação só será viável se forem aplicados algoritmos eficientes para o tipo de estrutura matricial considerada, tais como os métodos do subespaço de Krylov. Portanto, fez-se um estudo para a escolha apropriada dos métodos que mais se adequavam a este problema, sendo os escolhidos os métodos Bi-Conjugate Gradient (BiCG), o Bi-Conjugate Gradient Stabilized (BiCGSTAB) e o Quasi-Minimal Residual (QMR). Alguns problemas testes foram utilizados a fim de validar as soluções numéricas obtidas com a versão implícita do método SPH.