2 resultados para Ostwald ripening

em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estudos multitemporais de dados de sensoriamento remoto dedicam-se ao mapeamento temático de uso da terra em diferentes instâncias de tempo com o objetivo de identificar as mudanças ocorridas em uma região em determinado período. Em sua maioria, os trabalhos de classificação automática supervisionada de imagens de sensoriamento remoto não utilizam um modelo de transformação temporal no processo de classificação. Pesquisas realizadas na última década abriram um importante precedente ao comprovarem que a utilização de um modelo de conhecimento sobre a dinâmica da região (modelo de transformação temporal), baseado em Cadeias de Markov Fuzzy (CMF), possibilita resultados superiores aos produzidos pelos classificadores supervisionados monotemporais. Desta forma, o presente trabalho enfoca um dos aspectos desta abordagem pouco investigados: a combinação de CMF de intervalos de tempo curtos para classificar imagens de períodos longos. A área de estudo utilizada nos experimentos é um remanescente florestal situado no município de Londrina-PR e que abrange todo o limite do Parque Estadual Mata dos Godoy. Como dados de entrada, são utilizadas cinco imagens do satélite Landsat 5 TM com intervalo temporal de cinco anos. De uma forma geral, verificou-se, a partir dos resultados experimentais, que o uso das Cadeias de Markov Fuzzy contribuiu significativamente para a melhoria do desempenho do processo de classificação automática em imagens orbitais multitemporais, quando comparado com uma classificação monotemporal. Ainda, pôde-se observar que as classificações com base em matrizes estimadas para períodos curtos sempre apresentaram resultados superiores aos das classificações com base em matrizes estimadas para períodos longos. Também, que a superioridade da estimação direta frente à extrapolação se reduz com o aumento da distância temporal. Os resultados do presente trabalho poderão servir de motivação para a criação de sistemas automáticos de classificação de imagens multitemporais. O potencial de sua aplicação se justifica pela aceleração do processo de monitoramento do uso e cobertura da terra, considerando a melhoria obtida frente a classificações supervisionadas tradicionais.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A discriminação de fases que são praticamente indistinguíveis ao microscópio ótico de luz refletida ou ao microscópio eletrônico de varredura (MEV) é um dos problemas clássicos da microscopia de minérios. Com o objetivo de resolver este problema vem sendo recentemente empregada a técnica de microscopia colocalizada, que consiste na junção de duas modalidades de microscopia, microscopia ótica e microscopia eletrônica de varredura. O objetivo da técnica é fornecer uma imagem de microscopia multimodal, tornando possível a identificação, em amostras de minerais, de fases que não seriam distinguíveis com o uso de uma única modalidade, superando assim as limitações individuais dos dois sistemas. O método de registro até então disponível na literatura para a fusão das imagens de microscopia ótica e de microscopia eletrônica de varredura é um procedimento trabalhoso e extremamente dependente da interação do operador, uma vez que envolve a calibração do sistema com uma malha padrão a cada rotina de aquisição de imagens. Por esse motivo a técnica existente não é prática. Este trabalho propõe uma metodologia para automatizar o processo de registro de imagens de microscopia ótica e de microscopia eletrônica de varredura de maneira a aperfeiçoar e simplificar o uso da técnica de microscopia colocalizada. O método proposto pode ser subdividido em dois procedimentos: obtenção da transformação e registro das imagens com uso desta transformação. A obtenção da transformação envolve, primeiramente, o pré-processamento dos pares de forma a executar um registro grosseiro entre as imagens de cada par. Em seguida, são obtidos pontos homólogos, nas imagens óticas e de MEV. Para tal, foram utilizados dois métodos, o primeiro desenvolvido com base no algoritmo SIFT e o segundo definido a partir da varredura pelo máximo valor do coeficiente de correlação. Na etapa seguinte é calculada a transformação. Foram empregadas duas abordagens distintas: a média ponderada local (LWM) e os mínimos quadrados ponderados com polinômios ortogonais (MQPPO). O LWM recebe como entradas os chamados pseudo-homólogos, pontos que são forçadamente distribuídos de forma regular na imagem de referência, e que revelam, na imagem a ser registrada, os deslocamentos locais relativos entre as imagens. Tais pseudo-homólogos podem ser obtidos tanto pelo SIFT como pelo método do coeficiente de correlação. Por outro lado, o MQPPO recebe um conjunto de pontos com a distribuição natural. A análise dos registro de imagens obtidos empregou como métrica o valor da correlação entre as imagens obtidas. Observou-se que com o uso das variantes propostas SIFT-LWM e SIFT-Correlação foram obtidos resultados ligeiramente superiores aos do método com a malha padrão e LWM. Assim, a proposta, além de reduzir drasticamente a intervenção do operador, ainda possibilitou resultados mais precisos. Por outro lado, o método baseado na transformação fornecida pelos mínimos quadrados ponderados com polinômios ortogonais mostrou resultados inferiores aos produzidos pelo método que faz uso da malha padrão.