8 resultados para Nonlinear integral equations - Numerical solutions
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
O esquema iterativo de fonte de espalhamento (SI) é tradicionalmente aplicado para a convergência da solução numérica de malha fina para problemas de transporte de nêutrons monoenergéticos na formulação de ordenadas discretas com fonte fixa. O esquema SI é muito simples de se implementar sob o ponto de vista computacional; porém, o esquema SI pode apresentar taxa de convergência muito lenta, principalmente para meios difusivos (baixa absorção) com vários livres caminhos médios de extensão. Nesta dissertação descrevemos uma técnica de aceleração baseada na melhoria da estimativa inicial para a distribuição da fonte de espalhamento no interior do domínio de solução. Em outras palavras, usamos como estimativa inicial para o fluxo escalar médio na grade de discretização de malha fina, presentes nos termos da fonte de espalhamento das equações discretizadas SN usadas nas varreduras de transporte, a solução numérica da equação da difusão de nêutrons em grade espacial de malha grossa com condições de contorno especiais, que aproximam as condições de contorno prescritas que são clássicas em cálculos SN, incluindo condições de contorno do tipo vácuo. Para aplicarmos esta solução gerada pela equação da difusão em grade de discretização de malha grossa nas equações discretizadas SN de transporte na grade de discretização de malha fina, primeiro implementamos uma reconstrução espacial dentro de cada nodo de discretização, e então determinamos o fluxo escalar médio em grade de discretização de malha fina para usá-lo nos termos da fonte de espalhamento. Consideramos um número de experimentos numéricos para ilustrar a eficiência oferecida pela presente técnica (DSA) de aceleração sintética de difusão.
Resumo:
Um método espectronodal é desenvolvido para problemas de transporte de partículas neutras de fonte fixa, multigrupo de energia em geometria cartesiana na formulação de ordenadas discretas (SN). Para geometria unidimensional o método espectronodal multigrupo denomina-se método spectral Greens function (SGF) com o esquema de inversão nodal (NBI) que converge solução numérica para problemas SN multigrupo em geometria unidimensional, que são completamente livre de erros de truncamento espacial para ordem L de anisotropia de espalhamento desde que L < N. Para geometria X; Y o método espectronodal multigrupo baseia-se em integrações transversais das equações SN no interior dos nodos de discretização espacial, separadamente nas direções coordenadas x e y. Já que os termos de fuga transversal são aproximados por constantes, o método nodal resultante denomina-se SGF-constant nodal (SGF-CN), que é aplicado a problemas SN multigrupo de fonte fixa em geometria X; Y com espalhamento isotrópico. Resultados numéricos são apresentados para ilustrar a eficiência dos códigos SGF e SGF-CN e a precisão das soluções numéricas convergidas em cálculos de malha grossa.
Resumo:
Em uma grande gama de problemas físicos, governados por equações diferenciais, muitas vezes é de interesse obter-se soluções para o regime transiente e, portanto, deve-se empregar técnicas de integração temporal. Uma primeira possibilidade seria a de aplicar-se métodos explícitos, devido à sua simplicidade e eficiência computacional. Entretanto, esses métodos frequentemente são somente condicionalmente estáveis e estão sujeitos a severas restrições na escolha do passo no tempo. Para problemas advectivos, governados por equações hiperbólicas, esta restrição é conhecida como a condição de Courant-Friedrichs-Lewy (CFL). Quando temse a necessidade de obter soluções numéricas para grandes períodos de tempo, ou quando o custo computacional a cada passo é elevado, esta condição torna-se um empecilho. A fim de contornar esta restrição, métodos implícitos, que são geralmente incondicionalmente estáveis, são utilizados. Neste trabalho, foram aplicadas algumas formulações implícitas para a integração temporal no método Smoothed Particle Hydrodynamics (SPH) de modo a possibilitar o uso de maiores incrementos de tempo e uma forte estabilidade no processo de marcha temporal. Devido ao alto custo computacional exigido pela busca das partículas a cada passo no tempo, esta implementação só será viável se forem aplicados algoritmos eficientes para o tipo de estrutura matricial considerada, tais como os métodos do subespaço de Krylov. Portanto, fez-se um estudo para a escolha apropriada dos métodos que mais se adequavam a este problema, sendo os escolhidos os métodos Bi-Conjugate Gradient (BiCG), o Bi-Conjugate Gradient Stabilized (BiCGSTAB) e o Quasi-Minimal Residual (QMR). Alguns problemas testes foram utilizados a fim de validar as soluções numéricas obtidas com a versão implícita do método SPH.
Resumo:
Neste trabalho é apresentado um simulador MATLAB para sistemas ópticos WDM amplificados baseado na solução das equações não lineares de Schrödinger acopladas, pelo método de Fourier de passo alternado. Este simulador permite o estudo da propagação de pulsos em fibras ópticas, considerando dispersão cromática, efeitos não lineares como automodulação de fase e modulação de fase cruzada e atenuação, prevendo também o emprego de amplificadores ópticos a fibra dopada com Érbio (EDFAs). Através de simulações numéricas, foi explorada a técnica de otimização do posicionamento de um EDFA ao longo de um enlace óptico, sem repetidores, que objetiva a redução dos custos de implantação de sistemas ópticos, seja pela diminuição da potência do transmissor ou pela relaxação da exigência de sensibilidade do receptor. Além disto, pode favorecer um aumento na capacidade do sistema, através do aumento do alcance ou da taxa de transmissão. A concordância dos resultados obtidos com os disponíveis na literatura confirmam a validade da técnica, bem como a versatilidade e robustez do simulador desenvolvido.
Resumo:
Neste trabalho, será considerado um problema de controle ótimo quadrático para a equação do calor em domínios retangulares com condição de fronteira do tipo Dirichlet é nos quais, a função de controle (dependente apenas no tempo) constitui um termo de fonte. Uma caracterização da solução ótima é obtida na forma de uma equação linear em um espaço de funções reais definidas no intervalo de tempo considerado. Em seguida, utiliza-se uma sequência de projeções em subespaços de dimensão finita para obter aproximações para o controle ótimo, o cada uma das quais pode ser gerada por um sistema linear de dimensão finita. A sequência de soluções aproximadas assim obtidas converge para a solução ótima do problema original. Finalmente, são apresentados resultados numéricos para domínios espaciais de dimensão 1.
Resumo:
Azeotropia é um fenômeno termodinâmico onde um líquido em ebulição produz um vapor com composição idêntica. Esta situação é um desafio para a Engenharia de Separação, já que os processos de destilação exploram as diferenças entre as volatilidades relativas e, portanto, um azeótropo pode ser uma barreira para a separação. Em misturas binárias, o cálculo da azeotropia é caracterizado por um sistema não-linear do tipo 2 × 2. Um interessante e raro caso é o denominado azeotropia dupla, que pode ser verificado quando este sistema não-linear tem duas soluções, correspondendo a dois azeótropos distintos. Diferentes métodos tem sido utilizados na resolução de problemas desta natureza, como métodos estocásticos de otimização e as técnicas intervalares (do tipo Newton intervalar/bisseção generalizada). Nesta tese apresentamos a formulação do problema de azeotropia dupla e uma nova e robusta abordagem para a resolução dos sistemas não-lineares do tipo 2 × 2, que é a inversão de funções do plano no plano (MALTA; SALDANHA; TOMEI, 1996). No método proposto, as soluções são obtidas através de um conjunto de ações: obtenção de curvas críticas e de pré-imagens de pontos arbritários, inversão da função e por fim, as soluções esperadas para o problema de azeotropia. Esta metodologia foi desenvolvida para resolver sistemas não-lineares do tipo 2 × 2, tendo como objetivo dar uma visão global da função que modela o fenômeno em questão, além, é claro, de gerar as soluções esperadas. Serão apresentados resultados numéricos para o cálculo dos azeótropos no sistema benzeno + hexafluorobenzeno a baixas pressões por este método de inversão. Como ferramentas auxiliares, serão também apresentados aspectos numéricos usando aproximações clássicas, tais como métodos de Newton com técnicas de globalização e o algorítmo de otimização não-linear C-GRASP, para efeito de comparação.
Resumo:
Um método de matriz resposta (RM) é descrito para gerar soluções numéricas livres de erros de truncamento espacial para problemas de transporte de nêutrons monoenergéticos e com fonte fixa, em geometria unidimensional na formulação de ordenadas discretas (SN). O método RM com esquema iterativo de inversão parcial por região (RBI) converge valores numéricos para os fluxos angulares nas fronteiras das regiões que coincidem com os valores da solução analítica das equações SN, afora os erros de arredondamento da aritmética finita computacional. Desenvolvemos um esquema numérico de reconstrução espacial, que fornece a saída para os fluxos escalares de nêutrons em qualquer ponto do domínio definido pelo usuário, com um passo de avanço também escolhido pelo usuário. Resultados numéricos são apresentados para ilustrar a precisão do presente método em cálculos de malha grossa.
Resumo:
Neste trabalho, três técnicas para resolver numericamente problemas inversos de transporte de partículas neutras a uma velocidade para aplicações em engenharia nuclear são desenvolvidas. É fato conhecido que problemas diretos estacionários e monoenergéticos de transporte são caracterizados por estimar o fluxo de partículas como uma função-distribuição das variáveis independentes de espaço e de direção de movimento, quando os parâmetros materiais (seções de choque macroscópicas), a geometria, e o fluxo incidente nos contornos do domínio (condições de contorno), bem como a distribuição de fonte interior são conhecidos. Por outro lado, problemas inversos, neste trabalho, buscam estimativas para o fluxo incidente no contorno, ou a fonte interior, ou frações vazio em barras homogêneas. O modelo matemático usado tanto para os problemas diretos como para os problemas inversos é a equação de transporte independente do tempo, a uma velocidade, em geometria unidimensional e com o espalhamento linearmente anisotrópico na formulação de ordenadas discretas (SN). Nos problemas inversos de valor de contorno, dado o fluxo emergente em um extremo da barra, medido por um detector de nêutrons, por exemplo, buscamos uma estimativa precisa para o fluxo incidente no extremo oposto. Por outro lado, nos problemas inversos SN de fonte interior, buscamos uma estimativa precisa para a fonte armazenada no interior do domínio para fins de blindagem, sendo dado o fluxo emergente no contorno da barra. Além disso, nos problemas inversos SN de fração de vazio, dado o fluxo emergente em uma fronteira da barra devido ao fluxo incidente prescrito no extremo oposto, procuramos por uma estimativa precisa da fração de vazio no interior da barra, no contexto de ensaios não-destrutivos para aplicações na indústria. O código computacional desenvolvido neste trabalho apresenta o método espectronodal de malha grossa spectral Greens function (SGF) para os problemas diretos SN em geometria unidimensional para gerar soluções numéricas precisas para os três problemas inversos SN descritos acima. Para os problemas inversos SN de valor de contorno e de fonte interior, usamos a propriedade da proporcionalidade da fuga de partículas; ademais, para os problemas inversos SN de fração de vazio, oferecemos a técnica a qual nos referimos como o método físico da bissecção. Apresentamos resultados numéricos para ilustrar a precisão das três técnicas, conforme descrito nesta tese.