2 resultados para NP-hard
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
Nas últimas décadas, o problema de escalonamento da produção em oficina de máquinas, na literatura referido como JSSP (do inglês Job Shop Scheduling Problem), tem recebido grande destaque por parte de pesquisadores do mundo inteiro. Uma das razões que justificam tamanho interesse está em sua alta complexidade. O JSSP é um problema de análise combinatória classificado como NP-Difícil e, apesar de existir uma grande variedade de métodos e heurísticas que são capazes de resolvê-lo, ainda não existe hoje nenhum método ou heurística capaz de encontrar soluções ótimas para todos os problemas testes apresentados na literatura. A outra razão basea-se no fato de que esse problema encontra-se presente no diaa- dia das indústrias de transformação de vários segmento e, uma vez que a otimização do escalonamento pode gerar uma redução significativa no tempo de produção e, consequentemente, um melhor aproveitamento dos recursos de produção, ele pode gerar um forte impacto no lucro dessas indústrias, principalmente nos casos em que o setor de produção é responsável por grande parte dos seus custos totais. Entre as heurísticas que podem ser aplicadas à solução deste problema, o Busca Tabu e o Multidão de Partículas apresentam uma boa performance para a maioria dos problemas testes encontrados na literatura. Geralmente, a heurística Busca Tabu apresenta uma boa e rápida convergência para pontos ótimos ou subótimos, contudo esta convergência é frequentemente interrompida por processos cíclicos e a performance do método depende fortemente da solução inicial e do ajuste de seus parâmetros. A heurística Multidão de Partículas tende a convergir para pontos ótimos, ao custo de um grande esforço computacional, sendo que sua performance também apresenta uma grande sensibilidade ao ajuste de seus parâmetros. Como as diferentes heurísticas aplicadas ao problema apresentam pontos positivos e negativos, atualmente alguns pesquisadores começam a concentrar seus esforços na hibridização das heurísticas existentes no intuito de gerar novas heurísticas híbridas que reúnam as qualidades de suas heurísticas de base, buscando desta forma diminuir ou mesmo eliminar seus aspectos negativos. Neste trabalho, em um primeiro momento, são apresentados três modelos de hibridização baseados no esquema geral das Heurísticas de Busca Local, os quais são testados com as heurísticas Busca Tabu e Multidão de Partículas. Posteriormente é apresentada uma adaptação do método Colisão de Partículas, originalmente desenvolvido para problemas contínuos, onde o método Busca Tabu é utilizado como operador de exploração local e operadores de mutação são utilizados para perturbação da solução. Como resultado, este trabalho mostra que, no caso dos modelos híbridos, a natureza complementar e diferente dos métodos Busca Tabu e Multidão de Partículas, na forma como são aqui apresentados, da origem à algoritmos robustos capazes de gerar solução ótimas ou muito boas e muito menos sensíveis ao ajuste dos parâmetros de cada um dos métodos de origem. No caso do método Colisão de Partículas, o novo algorítimo é capaz de atenuar a sensibilidade ao ajuste dos parâmetros e de evitar os processos cíclicos do método Busca Tabu, produzindo assim melhores resultados.
Resumo:
Com o passar do tempo, a demanda elétrica de diversas áreas varia tornando necessária a construção de novos geradores elétricos e a expansão da rede de transmissão de energia elétrica. Nesta dissertação, focamos no problema de expansão da rede de transmissão, assumindo que novos geradores estão construídos para suprir as novas demandas. Essa expansão exige altos investimentos que precisam ser cuidadosamente planejados. O problema pode ser modelado como um problema de otimização não linear inteira mista e pertence à classe dos problemas NP-difíceis. Desta forma, uma abordagem heurística pode ser adequada para a sua solução pois pode vir a fornecer boas soluções em tempo computacional aceitável. Esta dissertação se propõe a apresentar um estudo do problema de planejamento da expansão de redes de transmissão de energia elétrica estático e multiestágio. Mostramos o que já existe na literatura para o que é chamado de problema sem redimensionamento e as inovações feitas por nós para o problema com redimensionamento. Quanto aos métodos de solução, utilizamos a metaheurística GRASP para o problema estático e combinamos o GRASP com o procedimento Backward-Forward quando falamos em problema multiestágio. Nesta dissertação comparamos os resultados computacionais obtidos com resultados encontrados na literatura.