7 resultados para Monte Carlo, Método

em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente trabalho apresenta um estudo referente à aplicação da abordagem Bayesiana como técnica de solução do problema inverso de identificação de danos estruturais, onde a integridade da estrutura é continuamente descrita por um parâmetro estrutural denominado parâmetro de coesão. A estrutura escolhida para análise é uma viga simplesmente apoiada do tipo Euler-Bernoulli. A identificação de danos é baseada em alterações na resposta impulsiva da estrutura, provocadas pela presença dos mesmos. O problema direto é resolvido através do Método de Elementos Finitos (MEF), que, por sua vez, é parametrizado pelo parâmetro de coesão da estrutura. O problema de identificação de danos é formulado como um problema inverso, cuja solução, do ponto de vista Bayesiano, é uma distribuição de probabilidade a posteriori para cada parâmetro de coesão da estrutura, obtida utilizando-se a metodologia de amostragem de Monte Carlo com Cadeia de Markov. As incertezas inerentes aos dados medidos serão contempladas na função de verossimilhança. Três estratégias de solução são apresentadas. Na Estratégia 1, os parâmetros de coesão da estrutura são amostrados de funções densidade de probabilidade a posteriori que possuem o mesmo desvio padrão. Na Estratégia 2, após uma análise prévia do processo de identificação de danos, determina-se regiões da viga potencialmente danificadas e os parâmetros de coesão associados à essas regiões são amostrados a partir de funções de densidade de probabilidade a posteriori que possuem desvios diferenciados. Na Estratégia 3, após uma análise prévia do processo de identificação de danos, apenas os parâmetros associados às regiões identificadas como potencialmente danificadas são atualizados. Um conjunto de resultados numéricos é apresentado levando-se em consideração diferentes níveis de ruído para as três estratégias de solução apresentadas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O presente trabalho trata do estudo, por meio de simulação de Monte Carlo, de correlações entre variáveis cinemáticas nas topologias de difração simples e de dupla troca de pomeron com vista a delimitar e estudar o espaço de fase referente às topologias citadas, em especial no que se refere á produção inclusiva de dijatos no contexto do experimento CMS/LHC. Será também apresentada uma análise da produção, por difração simples, de dijatos inclusivos a energia no centro de massa √s = 14 TeV (também por simulação de Monte Carlo), na qual estabelecemos um procedimento, a ser usado com dados, para a observação desse tipo de processo. Ainda analisamos a influência de diversos valores da probabilidade de sobrevivência do intervalo de rapidez, [|S|], nos resultados, de forma que com 10 pb -1 de dados acumulados, uma simples observação da produção de dijatos difrativos inclusivos, pelo método proposto, pode vir a excluir valores muito pequenos de [|S|].

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A Física das Radiações é um ramo da Física que está presente em diversas áreas de estudo e se relaciona ao conceito de espectrometria. Dentre as inúmeras técnicas espectrométricas existentes, destaca-se a espectrometria por fluorescência de raios X. Esta também possui uma gama de variações da qual pode-se dar ênfase a um determinado subconjunto de técnicas. A produção de fluorescência de raios X permite (em certos casos) a análise das propriedades físico-químicas de uma amostra específica, possibilitando a determinação de sua constituiçõa química e abrindo um leque de aplicações. Porém, o estudo experimental pode exigir uma grande carga de trabalho, tanto em termos do aparato físico quanto em relação conhecimento técnico. Assim, a técnica de simulação entra em cena como um caminho viável, entre a teoria e a experimentação. Através do método de Monte Carlo, que se utiliza da manipulação de números aleatórios, a simulação se mostra como uma espécie de alternativa ao trabalho experimental.Ela desenvolve este papel por meio de um processo de modelagem, dentro de um ambiente seguro e livre de riscos. E ainda pode contar com a computação de alto desempenho, de forma a otimizar todo o trabalho por meio da arquitetura distribuída. O objetivo central deste trabalho é a elaboração de um simulador computacional para análise e estudo de sistemas de fluorescência de raios X desenvolvido numa plataforma de computação distribuída de forma nativa com o intuito de gerar dados otimizados. Como resultados deste trabalho, mostra-se a viabilidade da construção do simulador através da linguagem CHARM++, uma linguagem baseada em C++ que incorpora rotinas para processamento distribuído, o valor da metodologia para a modelagem de sistemas e a aplicação desta na construção de um simulador para espectrometria por fluorescência de raios X. O simulador foi construído com a capacidade de reproduzir uma fonte de radiação eletromagnética, amostras complexas e um conjunto de detectores. A modelagem dos detectores incorpora a capacidade de geração de imagens baseadas nas contagens registradas. Para validação do simulador, comparou-se os resultados espectrométricos com os resultados gerados por outro simulador já validado: o MCNP.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As técnicas de injeção de traçadores têm sido amplamente utilizadas na investigação de escoamentos em meios porosos, principalmente em problemas envolvendo a simulação numérica de escoamentos miscíveis em reservatórios de petróleo e o transporte de contaminantes em aquíferos. Reservatórios subterrâneos são em geral heterogêneos e podem apresentar variações significativas das suas propriedades em várias escalas de comprimento. Estas variações espaciais são incorporadas às equações que governam o escoamento no interior do meio poroso por meio de campos aleatórios. Estes campos podem prover uma descrição das heterogeneidades da formação subterrânea nos casos onde o conhecimento geológico não fornece o detalhamento necessário para a predição determinística do escoamento através do meio poroso. Nesta tese é empregado um modelo lognormal para o campo de permeabilidades a fim de reproduzir-se a distribuição de permeabilidades do meio real, e a geração numérica destes campos aleatórios é feita pelo método da Soma Sucessiva de Campos Gaussianos Independentes (SSCGI). O objetivo principal deste trabalho é o estudo da quantificação de incertezas para o problema inverso do transporte de um traçador em um meio poroso heterogêneo empregando uma abordagem Bayesiana para a atualização dos campos de permeabilidades, baseada na medição dos valores da concentração espacial do traçador em tempos específicos. Um método do tipo Markov Chain Monte Carlo a dois estágios é utilizado na amostragem da distribuição de probabilidade a posteriori e a cadeia de Markov é construída a partir da reconstrução aleatória dos campos de permeabilidades. Na resolução do problema de pressão-velocidade que governa o escoamento empregase um método do tipo Elementos Finitos Mistos adequado para o cálculo acurado dos fluxos em campos de permeabilidades heterogêneos e uma abordagem Lagrangiana, o método Forward Integral Tracking (FIT), é utilizada na simulação numérica do problema do transporte do traçador. Resultados numéricos são obtidos e apresentados para um conjunto de realizações amostrais dos campos de permeabilidades.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Esta dissertação tem como objetivo apresentar uma estimativa preliminar do volume de recurso contingente não-convencionais de folhelhos oleígenos (oil shale) na Formação Tremembé através de métodos probabilísticos aplicados à informações compiladas de bibliografias existentes sobre a bacia. Como base para esta estimativa utilizou-se informações obtidas através de sísmica 2D, poços existentes na área e perfis geoquímicos. Através da interpretação dos mesmos foram gerados os valores de inputs para os parâmetros utilizados no cálculo, como: espessura econômica, densidade do minério e valor de Ensaio Fisher (Litros de óleo por tonelada de rocha). Para a análise foi construída uma planilha Excel no qual já descrito cada parâmetro do cálculo. Foi utilizado o software @Risk, da Palisade Inc., que é capaz de atribuir distribuições estatísticas a parâmetros utilizados no cálculo obtendo, a partir do método Monte Carlo, distribuições dos possíveis resultados. A metodologia apresentada se demonstra mais adequada ao caso em estudo que o método determinístico, devido a restrição e ausência da precisão dos dados o que aumentaria as incertezas e as chances de erro no cálculo do volume, podendo impossibilitar uma avaliação, no caso do segundo. A metodologia probabilística ao mesmo tempo em que permite uma avaliação preliminar na ausência de dados precisos, ela gera cenários probabilísticos de resultados, possibilitando a antecipação da tomada de decisões em um projeto, permitindo sua continuação ou abandono.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neste trabalho estudamos a dependência com o tamanho do sistema dos observáveis relacionados com a transição de fase de 1 ordem do rupo de calibre Z(2) em 4 dimensões. Foram realizadas simulações de Monte Carlo numa rede cúbica para diferentes valores da aresta, utilizando o método do Banho Térmico para sortear os elementos do grupo na rede.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O presente trabalho investiga um método de detecção de anomalias baseado em sistemas imunológicos artificiais, especificamente em uma técnica de reconhecimento próprio/não-próprio chamada algoritmo de seleção negativa (NSA). Foi utilizado um esquema de representação baseado em hiperesferas com centros e raios variáveis e um modelo capaz de gerar detectores, com esta representação, de forma eficiente. Tal modelo utiliza algoritmos genéticos onde cada gene do cromossomo contém um índice para um ponto de uma distribuição quasi-aleatória que servirá como centro do detector e uma função decodificadora responsável por determinar os raios apropriados. A aptidão do cromossomo é dada por uma estimativa do volume coberto através uma integral de Monte Carlo. Este algoritmo teve seu desempenho verificado em diferentes dimensões e suas limitações levantadas. Com isso, pode-se focar as melhorias no algoritmo, feitas através da implementação de operadores genéticos mais adequados para a representação utilizada, de técnicas de redução do número de pontos do conjunto próprio e de um método de pré-processamento baseado em bitmaps de séries temporais. Avaliações com dados sintéticos e experimentos com dados reais demonstram o bom desempenho do algoritmo proposto e a diminuição do tempo de execução.