2 resultados para Markov chains hidden Markov models Viterbi algorithm Forward-Backward algorithm maximum likelihood

em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A segmentação dos nomes nas suas partes constitutivas é uma etapa fundamental no processo de integração de bases de dados por meio das técnicas de vinculação de registros. Esta separação dos nomes pode ser realizada de diferentes maneiras. Este estudo teve como objetivo avaliar a utilização do Modelo Escondido de Markov (HMM) na segmentação nomes e endereços de pessoas e a eficiência desta segmentação no processo de vinculação de registros. Foram utilizadas as bases do Sistema de Informações sobre Mortalidade (SIM) e do Subsistema de Informação de Procedimentos de Alta Complexidade (APAC) do estado do Rio de Janeiro no período entre 1999 a 2004. Uma metodologia foi proposta para a segmentação de nome e endereço sendo composta por oito fases, utilizando rotinas implementadas em PL/SQL e a biblioteca JAHMM, implementação na linguagem Java de algoritmos de HMM. Uma amostra aleatória de 100 registros de cada base foi utilizada para verificar a correção do processo de segmentação por meio do modelo HMM.Para verificar o efeito da segmentação do nome por meio do HMM, três processos de vinculação foram aplicados sobre uma amostra das duas bases citadas acima, cada um deles utilizando diferentes estratégias de segmentação, a saber: 1) divisão dos nomes pela primeira parte, última parte e iniciais do nome do meio; 2) divisão do nome em cinco partes; (3) segmentação segundo o HMM. A aplicação do modelo HMM como mecanismo de segmentação obteve boa concordância quando comparado com o observador humano. As diferentes estratégias de segmentação geraram resultados bastante similares na vinculação de registros, tendo a estratégia 1 obtido um desempenho pouco melhor que as demais. Este estudo sugere que a segmentação de nomes brasileiros por meio do modelo escondido de Markov não é mais eficaz do que métodos tradicionais de segmentação.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A microtomografia computadorizada (computed microtomography - μCT) permite uma análise não destrutiva de amostras, além de possibilitar sua reutilização. A μCT permite também a reconstrução de objetos tridimensionais a partir de suas seções transversais que são obtidas interceptando a amostra através de planos paralelos. Equipamentos de μCT oferecem ao usuário diversas opções de configurações que alteram a qualidade das imagens obtidas afetando, dessa forma, o resultado esperado. Nesta tese foi realizada a caracterização e análise de imagens de μCT geradas pelo microtomógrafo SkyScan1174 Compact Micro-CT. A base desta caracterização é o processamento de imagens. Foram aplicadas técnicas de realce (brilho, saturação, equalização do histograma e filtro de mediana) nas imagens originais gerando novas imagens e em seguida a quantificação de ambos os conjuntos, utilizando descritores de textura (probabilidade máxima, momento de diferença, momento inverso de diferença, entropia e uniformidade). Os resultados mostram que, comparadas às originais, as imagens que passaram por técnicas de realce apresentaram melhoras quando gerados seus modelos tridimensionais.