6 resultados para Least Square Method
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
Este trabalho apresenta um estudo teórico e numérico sobre os erros que ocorrem nos cálculos de gradientes em malhas não estruturadas constituídas pelo diagrama de Voronoi, malhas estas, formadas também pela triangulação de Delaunay. As malhas adotadas, no trabalho, foram as malhas cartesianas e as malhas triangulares, esta última é gerada pela divisão de um quadrado em dois ou quatro triângulos iguais. Para tal análise, adotamos a escolha de três metodologias distintas para o cálculo dos gradientes: método de Green Gauss, método do Mínimo Resíduo Quadrático e método da Média do Gradiente Projetado Corrigido. O texto se baseia em dois enfoques principais: mostrar que as equações de erros dadas pelos gradientes podem ser semelhantes, porém com sinais opostos, para pontos de cálculos em volumes vizinhos e que a ordem do erro das equações analíticas pode ser melhorada em malhas uniformes quando comparada as não uniformes, nos casos unidimensionais, e quando analisada na face de tais volumes vizinhos nos casos bidimensionais.
Resumo:
Apesar de serem intensamente estudados em muitos países que caminham na vanguarda do conhecimento, os métodos sem malha ainda são pouco explorados pelas universidades brasileiras. De modo a gerar uma maior difusão ou, para a maioria, fazer sua introdução, esta dissertação objetiva efetuar o entendimento dos métodos sem malha baseando-se em aplicações atinentes à mecânica dos sólidos. Para tanto, são apresentados os conceitos primários dos métodos sem malha e o seu desenvolvimento histórico desde sua origem no método smooth particle hydrodynamic até o método da partição da unidade, sua forma mais abrangente. Dentro deste contexto, foi investigada detalhadamente a forma mais tradicional dos métodos sem malha: o método de Galerkin sem elementos, e também um método diferenciado: o método de interpolação de ponto. Assim, por meio de aplicações em análises de barras e chapas em estado plano de tensão, são apresentadas as características, virtudes e deficiências desses métodos em comparação aos métodos tradicionais, como o método dos elementos finitos. É realizado ainda um estudo em uma importante área de aplicação dos métodos sem malha, a mecânica da fratura, buscando compreender como é efetuada a representação computacional da trinca, com especialidade, por meio dos critérios de visibilidade e de difração. Utilizando-se esses critérios e os conceitos da mecânica da fratura, é calculado o fator de intensidade de tensão através do conceito da integral J.
Resumo:
Esta dissertação apresenta resultados da aplicação de filtros adaptativos, utilizando os algoritmos NLMS (Normalized Least Mean Square) e RLS (Recursive Least Square), para a redução de desvios em previsões climáticas. As discrepâncias existentes entre o estado real da atmosfera e o previsto por um modelo numérico tendem a aumentar ao longo do período de integração. O modelo atmosférico Eta é utilizado operacionalmente para previsão numérica no CPTEC/INPE e como outros modelos atmosféricos, apresenta imprecisão nas previsões climáticas. Existem pesquisas que visam introduzir melhorias no modelo atmosférico Eta e outras que avaliam as previsões e identificam os erros do modelo para que seus produtos sejam utilizados de forma adequada. Dessa forma, neste trabalho pretende-se filtrar os dados provenientes do modelo Eta e ajustá-los, de modo a minimizar os erros entre os resultados fornecidos pelo modelo Eta e as reanálises do NCEP. Assim, empregamos técnicas de processamento digital de sinais e imagens com o intuito de reduzir os erros das previsões climáticas do modelo Eta. Os filtros adaptativos nesta dissertação ajustarão as séries ao longo do tempo de previsão. Para treinar os filtros foram utilizadas técnicas de agrupamento de regiões, como por exemplo o algoritmo de clusterização k-means, de modo a selecionar séries climáticas que apresentem comportamentos semelhantes entre si. As variáveis climáticas estudadas são o vento meridional e a altura geopotencial na região coberta pelo modelo de previsão atmosférica Eta com resolução de 40 km, a um nível de pressão de 250 hPa. Por fim, os resultados obtidos mostram que o filtro com 4 coeficientes, adaptado pelo algoritmo RLS em conjunto com o critério de seleção de regiões por meio do algoritmo k-means apresenta o melhor desempenho ao reduzir o erro médio e a dispersão do erro, tanto para a variável vento meridional quanto para a variável altura geopotencial.
Resumo:
Este trabalho de pesquisa descreve três estudos de utilização de métodos quimiométricos para a classificação e caracterização de óleos comestíveis vegetais e seus parâmetros de qualidade através das técnicas de espectrometria de absorção molecular no infravermelho médio com transformada de Fourier e de espectrometria no infravermelho próximo, e o monitoramento da qualidade e estabilidade oxidativa do iogurte usando espectrometria de fluorescência molecular. O primeiro e segundo estudos visam à classificação e caracterização de parâmetros de qualidade de óleos comestíveis vegetais utilizando espectrometria no infravermelho médio com transformada de Fourier (FT-MIR) e no infravermelho próximo (NIR). O algoritmo de Kennard-Stone foi usado para a seleção do conjunto de validação após análise de componentes principais (PCA). A discriminação entre os óleos de canola, girassol, milho e soja foi investigada usando SVM-DA, SIMCA e PLS-DA. A predição dos parâmetros de qualidade, índice de refração e densidade relativa dos óleos, foi investigada usando os métodos de calibração multivariada dos mínimos quadrados parciais (PLS), iPLS e SVM para os dados de FT-MIR e NIR. Vários tipos de pré-processamentos, primeira derivada, correção do sinal multiplicativo (MSC), dados centrados na média, correção do sinal ortogonal (OSC) e variação normal padrão (SNV) foram utilizados, usando a raiz quadrada do erro médio quadrático de validação cruzada (RMSECV) e de predição (RMSEP) como parâmetros de avaliação. A metodologia desenvolvida para determinação de índice de refração e densidade relativa e classificação dos óleos vegetais é rápida e direta. O terceiro estudo visa à avaliação da estabilidade oxidativa e qualidade do iogurte armazenado a 4C submetido à luz direta e mantido no escuro, usando a análise dos fatores paralelos (PARAFAC) na luminescência exibida por três fluoróforos presentes no iogurte, onde pelo menos um deles está fortemente relacionado com as condições de armazenamento. O sinal fluorescente foi identificado pelo espectro de emissão e excitação das substâncias fluorescentes puras, que foram sugeridas serem vitamina A, triptofano e riboflavina. Modelos de regressão baseados nos escores do PARAFAC para a riboflavina foram desenvolvidos usando os escores obtidos no primeiro dia como variável dependente e os escores obtidos durante o armazenamento como variável independente. Foi visível o decaimento da curva analítica com o decurso do tempo da experimentação. Portanto, o teor de riboflavina pode ser considerado um bom indicador para a estabilidade do iogurte. Assim, é possível concluir que a espectroscopia de fluorescência combinada com métodos quimiométricos é um método rápido para monitorar a estabilidade oxidativa e a qualidade do iogurte
Resumo:
A discriminação de fases que são praticamente indistinguíveis ao microscópio ótico de luz refletida ou ao microscópio eletrônico de varredura (MEV) é um dos problemas clássicos da microscopia de minérios. Com o objetivo de resolver este problema vem sendo recentemente empregada a técnica de microscopia colocalizada, que consiste na junção de duas modalidades de microscopia, microscopia ótica e microscopia eletrônica de varredura. O objetivo da técnica é fornecer uma imagem de microscopia multimodal, tornando possível a identificação, em amostras de minerais, de fases que não seriam distinguíveis com o uso de uma única modalidade, superando assim as limitações individuais dos dois sistemas. O método de registro até então disponível na literatura para a fusão das imagens de microscopia ótica e de microscopia eletrônica de varredura é um procedimento trabalhoso e extremamente dependente da interação do operador, uma vez que envolve a calibração do sistema com uma malha padrão a cada rotina de aquisição de imagens. Por esse motivo a técnica existente não é prática. Este trabalho propõe uma metodologia para automatizar o processo de registro de imagens de microscopia ótica e de microscopia eletrônica de varredura de maneira a aperfeiçoar e simplificar o uso da técnica de microscopia colocalizada. O método proposto pode ser subdividido em dois procedimentos: obtenção da transformação e registro das imagens com uso desta transformação. A obtenção da transformação envolve, primeiramente, o pré-processamento dos pares de forma a executar um registro grosseiro entre as imagens de cada par. Em seguida, são obtidos pontos homólogos, nas imagens óticas e de MEV. Para tal, foram utilizados dois métodos, o primeiro desenvolvido com base no algoritmo SIFT e o segundo definido a partir da varredura pelo máximo valor do coeficiente de correlação. Na etapa seguinte é calculada a transformação. Foram empregadas duas abordagens distintas: a média ponderada local (LWM) e os mínimos quadrados ponderados com polinômios ortogonais (MQPPO). O LWM recebe como entradas os chamados pseudo-homólogos, pontos que são forçadamente distribuídos de forma regular na imagem de referência, e que revelam, na imagem a ser registrada, os deslocamentos locais relativos entre as imagens. Tais pseudo-homólogos podem ser obtidos tanto pelo SIFT como pelo método do coeficiente de correlação. Por outro lado, o MQPPO recebe um conjunto de pontos com a distribuição natural. A análise dos registro de imagens obtidos empregou como métrica o valor da correlação entre as imagens obtidas. Observou-se que com o uso das variantes propostas SIFT-LWM e SIFT-Correlação foram obtidos resultados ligeiramente superiores aos do método com a malha padrão e LWM. Assim, a proposta, além de reduzir drasticamente a intervenção do operador, ainda possibilitou resultados mais precisos. Por outro lado, o método baseado na transformação fornecida pelos mínimos quadrados ponderados com polinômios ortogonais mostrou resultados inferiores aos produzidos pelo método que faz uso da malha padrão.
Resumo:
O biodiesel tem sido amplamente utilizado como uma fonte de energia renovável, que contribui para a diminuição de demanda por diesel mineral. Portanto, existem várias propriedades que devem ser monitoradas, a fim de produzir e distribuir biodiesel com a qualidade exigida. Neste trabalho, as propriedades físicas do biodiesel, tais como massa específica, índice de refração e ponto de entupimento de filtro a frio foram medidas e associadas a espectrometria no infravermelho próximo (NIR) e espectrometria no infravermelho médio (Mid-IR) utilizando ferramentas quimiométricas. Os métodos de regressão por mínimos quadrados parciais (PLS), regressão de mínimos quadrados parciais por intervalos (iPLS), e regressão por máquinas de vetor de suporte (SVM) com seleção de variáveis por Algoritmo Genético (GA) foram utilizadas para modelar as propriedades mencionadas. As amostras de biodiesel foram sintetizadas a partir de diferentes fontes, tais como canola, girassol, milho e soja. Amostras adicionais de biodiesel foram adquiridas de um fornecedor da região sul do Brasil. Em primeiro lugar, o pré-processamento de correção de linha de base foi usado para normalizar os dados espectrais de NIR, seguidos de outros tipos de pré-processamentos que foram aplicados, tais como centralização dos dados na média, 1 derivada e variação de padrão normal. O melhor resultado para a previsão do ponto de entupimento de filtro a frio foi utilizando os espectros de Mid-IR e o método de regressão GA-SVM, com alto coeficiente de determinação da previsão, R2Pred=0,96 e baixo valor da Raiz Quadrada do Erro Médio Quadrático da previsão, RMSEP (C)= 0,6. Para o modelo de previsão da massa específica, o melhor resultado foi obtido utilizando os espectros de Mid-IR e regressão por PLS, com R2Pred=0,98 e RMSEP (g/cm3)= 0,0002. Quanto ao modelo de previsão para o índice de refração, o melhor resultado foi obtido utilizando os espectros de Mid-IR e regressão por PLS, com excelente R2Pred=0,98 e RMSEP= 0,0001. Para esses conjuntos de dados, o PLS e o SVM demonstraram sua robustez, apresentando-se como ferramentas úteis para a previsão das propriedades do biodiesel estudadas