2 resultados para Iterative Optimization
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
Métodos de otimização que utilizam condições de otimalidade de primeira e/ou segunda ordem são conhecidos por serem eficientes. Comumente, esses métodos iterativos são desenvolvidos e analisados à luz da análise matemática do espaço euclidiano n-dimensional, cuja natureza é de caráter local. Consequentemente, esses métodos levam a algoritmos iterativos que executam apenas as buscas locais. Assim, a aplicação de tais algoritmos para o cálculo de minimizadores globais de uma função não linear,especialmente não-convexas e multimodais, depende fortemente da localização dos pontos de partida. O método de Otimização Global Topográfico é um algoritmo de agrupamento, que utiliza uma abordagem baseada em conceitos elementares da teoria dos grafos, a fim de gerar bons pontos de partida para os métodos de busca local, a partir de pontos distribuídos de modo uniforme no interior da região viável. Este trabalho tem dois objetivos. O primeiro é realizar uma nova abordagem sobre método de Otimização Global Topográfica, onde, pela primeira vez, seus fundamentos são formalmente descritos e suas propriedades básicas são matematicamente comprovadas. Neste contexto, propõe-se uma fórmula semi-empírica para calcular o parâmetro chave deste algoritmo de agrupamento, e, usando um método robusto e eficiente de direções viáveis por pontos-interiores, estendemos o uso do método de Otimização Global Topográfica a problemas com restrições de desigualdade. O segundo objetivo é a aplicação deste método para a análise de estabilidade de fase em misturas termodinâmicas,o qual consiste em determinar se uma dada mistura se apresenta em uma ou mais fases. A solução deste problema de otimização global é necessária para o cálculo do equilíbrio de fases, que é um problema de grande importância em processos da engenharia, como, por exemplo, na separação por destilação, em processos de extração e simulação da recuperação terciária de petróleo, entre outros. Além disso, afim de ter uma avaliação inicial do potencial dessa técnica, primeiro vamos resolver 70 problemas testes, e então comparar o desempenho do método proposto aqui com o solver MIDACO, um poderoso software recentemente introduzido no campo da otimização global.
Resumo:
Os métodos de otimização que adotam condições de otimalidade de primeira e/ou segunda ordem são eficientes e normalmente esses métodos iterativos são desenvolvidos e analisados através da análise matemática do espaço euclidiano n-dimensional, o qual tem caráter local. Esses métodos levam a algoritmos iterativos que são usados para o cálculo de minimizadores globais de uma função não linear, principalmente não-convexas e multimodais, dependendo da posição dos pontos de partida. Método de Otimização Global Topográfico é um algoritmo de agrupamento, o qual é fundamentado nos conceitos elementares da teoria dos grafos, com a finalidade de gerar bons pontos de partida para os métodos de busca local, com base nos pontos distribuídos de modo uniforme no interior da região viável. Este trabalho tem como objetivo a aplicação do método de Otimização Global Topográfica junto com um método robusto e eficaz de direções viáveis por pontos-interiores a problemas de otimização que tem restrições de igualdade e/ou desigualdade lineares e/ou não lineares, que constituem conjuntos viáveis com interiores não vazios. Para cada um destes problemas, é representado também um hiper-retângulo compreendendo cada conjunto viável, onde os pontos amostrais são gerados.