4 resultados para Inverse Scattering Transform
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
Neste trabalho, três técnicas para resolver numericamente problemas inversos de transporte de partículas neutras a uma velocidade para aplicações em engenharia nuclear são desenvolvidas. É fato conhecido que problemas diretos estacionários e monoenergéticos de transporte são caracterizados por estimar o fluxo de partículas como uma função-distribuição das variáveis independentes de espaço e de direção de movimento, quando os parâmetros materiais (seções de choque macroscópicas), a geometria, e o fluxo incidente nos contornos do domínio (condições de contorno), bem como a distribuição de fonte interior são conhecidos. Por outro lado, problemas inversos, neste trabalho, buscam estimativas para o fluxo incidente no contorno, ou a fonte interior, ou frações vazio em barras homogêneas. O modelo matemático usado tanto para os problemas diretos como para os problemas inversos é a equação de transporte independente do tempo, a uma velocidade, em geometria unidimensional e com o espalhamento linearmente anisotrópico na formulação de ordenadas discretas (SN). Nos problemas inversos de valor de contorno, dado o fluxo emergente em um extremo da barra, medido por um detector de nêutrons, por exemplo, buscamos uma estimativa precisa para o fluxo incidente no extremo oposto. Por outro lado, nos problemas inversos SN de fonte interior, buscamos uma estimativa precisa para a fonte armazenada no interior do domínio para fins de blindagem, sendo dado o fluxo emergente no contorno da barra. Além disso, nos problemas inversos SN de fração de vazio, dado o fluxo emergente em uma fronteira da barra devido ao fluxo incidente prescrito no extremo oposto, procuramos por uma estimativa precisa da fração de vazio no interior da barra, no contexto de ensaios não-destrutivos para aplicações na indústria. O código computacional desenvolvido neste trabalho apresenta o método espectronodal de malha grossa spectral Greens function (SGF) para os problemas diretos SN em geometria unidimensional para gerar soluções numéricas precisas para os três problemas inversos SN descritos acima. Para os problemas inversos SN de valor de contorno e de fonte interior, usamos a propriedade da proporcionalidade da fuga de partículas; ademais, para os problemas inversos SN de fração de vazio, oferecemos a técnica a qual nos referimos como o método físico da bissecção. Apresentamos resultados numéricos para ilustrar a precisão das três técnicas, conforme descrito nesta tese.
Resumo:
Esta tese apresenta um estudo sobre modelagem computacional onde são aplicadas meta-heurísticas de otimização na solução de problemas inversos de transferência radiativa em meios unidimensionais com albedo dependente da variável óptica, e meios unidimensionais de duas camadas onde o problema inverso é tratado como um problema de otimização. O trabalho aplica uma meta-heurística baseada em comportamentos da natureza conhecida como algoritmo dos vagalumes. Inicialmente, foram feitos estudos comparativos de desempenho com dois outros algoritmos estocásticos clássicos. Os resultados encontrados indicaram que a escolha do algoritmo dos vagalumes era apropriada. Em seguida, foram propostas outras estratégias que foram inseridas no algoritmo dos vagalumes canônico. Foi proposto um caso onde se testou e investigou todas as potenciais estratégias. As que apresentaram os melhores resultados foram, então, testadas em mais dois casos distintos. Todos os três casos testados foram em um ambiente de uma camada, com albedo de espalhamento dependente da posição espacial. As estratégias que apresentaram os resultados mais competitivos foram testadas em um meio de duas camadas. Para este novo cenário foram propostos cinco novos casos de testes. Os resultados obtidos, pelas novas variantes do algoritmo dos vagalumes, foram criticamente analisados.
Resumo:
Esta pesquisa consiste na solução do problema inverso de transferência radiativa para um meio participante (emissor, absorvedor e/ou espalhador) homogêneo unidimensional em uma camada, usando-se a combinação de rede neural artificial (RNA) com técnicas de otimização. A saída da RNA, devidamente treinada, apresenta os valores das propriedades radiativas [ω, τ0, ρ1 e ρ2] que são otimizadas através das seguintes técnicas: Particle Collision Algorithm (PCA), Algoritmos Genéticos (AG), Greedy Randomized Adaptive Search Procedure (GRASP) e Busca Tabu (BT). Os dados usados no treinamento da RNA são sintéticos, gerados através do problema direto sem a introdução de ruído. Os resultados obtidos unicamente pela RNA, apresentam um erro médio percentual menor que 1,64%, seria satisfatório, todavia para o tratamento usando-se as quatro técnicas de otimização citadas anteriormente, os resultados tornaram-se ainda melhores com erros percentuais menores que 0,04%, especialmente quando a otimização é feita por AG.
Resumo:
Modelos de evolução populacional são há muito tempo assunto de grande relevância, principalmente quando a população de estudo é composta por vetores de doenças. Tal importância se deve ao fato de existirem milhares de doenças que são propagadas por espécies específicas e conhecer como tais populações se comportam é vital quando pretende-se criar políticas públicas para controlar a sua proliferação. Este trabalho descreve um problema de evolução populacional difusivo com armadilhas locais e tempo de reprodução atrasado, o problema direto descreve a densidade de uma população uma vez conhecidos os parâmetros do modelo onde sua solução é obtida por meio da técnica de transformada integral generalizada, uma técnica numérico-analítica. Porém a solução do problema direto, por si só, não permite a simulação computacional de uma população em uma aplicação prática, uma vez que os parâmetros do modelo variam de população para população e precisam, portanto, ter seus valores conhecidos. Com o objetivo de possibilitar esta caracterização, o presente trabalho propõe a formulação e solução do problema inverso, estimando os parâmetros do modelo a partir de dados da população utilizando para tal tarefa dois métodos Bayesianos.