4 resultados para Immagini Analisi Tomosintesi CUDA Ricostruzione Qualità
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
Os métodos numéricos convencionais, baseados em malhas, têm sido amplamente aplicados na resolução de problemas da Dinâmica dos Fluidos Computacional. Entretanto, em problemas de escoamento de fluidos que envolvem superfícies livres, grandes explosões, grandes deformações, descontinuidades, ondas de choque etc., estes métodos podem apresentar algumas dificuldades práticas quando da resolução destes problemas. Como uma alternativa viável, existem os métodos de partículas livre de malhas. Neste trabalho é feita uma introdução ao método Lagrangeano de partículas, livre de malhas, Smoothed Particle Hydrodynamics (SPH) voltado para a simulação numérica de escoamentos de fluidos newtonianos compressíveis e quase-incompressíveis. Dois códigos numéricos foram desenvolvidos, uma versão serial e outra em paralelo, empregando a linguagem de programação C/C++ e a Compute Unified Device Architecture (CUDA), que possibilita o processamento em paralelo empregando os núcleos das Graphics Processing Units (GPUs) das placas de vídeo da NVIDIA Corporation. Os resultados numéricos foram validados e a eficiência computacional avaliada considerandose a resolução dos problemas unidimensionais Shock Tube e Blast Wave e bidimensional da Cavidade (Shear Driven Cavity Problem).
Resumo:
Neste trabalho é estudada a viabilidade de uma implementação em paralelo do algoritmo scale invariant feature transform (SIFT) para identificação de íris. Para a implementação do código foi utilizada a arquitetura para computação paralela compute unified device architecture (CUDA) e a linguagem OpenGL shading language (GLSL). O algoritmo foi testado utilizando três bases de dados de olhos e íris, o noisy visible wavelength iris image Database (UBIRIS), Michal-Libor e CASIA. Testes foram feitos para determinar o tempo de processamento para verificação da presença ou não de um indivíduo em um banco de dados, determinar a eficiência dos algoritmos de busca implementados em GLSL e CUDA e buscar valores de calibração que melhoram o posicionamento e a distribuição dos pontos-chave na região de interesse (íris) e a robustez do programa final.
Resumo:
A obtenção de imagens usando tomografia computadorizada revolucionou o diagnóstico de doenças na medicina e é usada amplamente em diferentes áreas da pesquisa científica. Como parte do processo de obtenção das imagens tomográficas tridimensionais um conjunto de radiografias são processadas por um algoritmo computacional, o mais usado atualmente é o algoritmo de Feldkamp, David e Kress (FDK). Os usos do processamento paralelo para acelerar os cálculos em algoritmos computacionais usando as diferentes tecnologias disponíveis no mercado têm mostrado sua utilidade para diminuir os tempos de processamento. No presente trabalho é apresentada a paralelização do algoritmo de reconstrução de imagens tridimensionais FDK usando unidades gráficas de processamento (GPU) e a linguagem CUDA-C. São apresentadas as GPUs como uma opção viável para executar computação paralela e abordados os conceitos introdutórios associados à tomografia computadorizada, GPUs, CUDA-C e processamento paralelo. A versão paralela do algoritmo FDK executada na GPU é comparada com uma versão serial do mesmo, mostrando maior velocidade de processamento. Os testes de desempenho foram feitos em duas GPUs de diferentes capacidades: a placa NVIDIA GeForce 9400GT (16 núcleos) e a placa NVIDIA Quadro 2000 (192 núcleos).
Resumo:
Neste trabalho, foi desenvolvido um simulador numérico baseado no método livre de malhas Smoothed Particle Hydrodynamics (SPH) para a resolução de escoamentos de fluidos newtonianos incompressíveis. Diferentemente da maioria das versões existentes deste método, o código numérico faz uso de uma técnica iterativa na determinação do campo de pressões. Este procedimento emprega a forma diferencial de uma equação de estado para um fluido compressível e a equação da continuidade a fim de que a correção da pressão seja determinada. Uma versão paralelizada do simulador numérico foi implementada usando a linguagem de programação C/C++ e a Compute Unified Device Architecture (CUDA) da NVIDIA Corporation. Foram simulados três problemas, o problema unidimensional do escoamento de Couette e os problemas bidimensionais do escoamento no interior de uma Cavidade (Shear Driven Cavity Problem) e da Quebra de Barragem (Dambreak).