2 resultados para ISOPARAMETRIC HYPERSURFACES
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
O caos determinístico é um dos aspectos mais interessantes no que diz respeito à teoria moderna dos sistemas dinâmicos, e está intrinsecamente associado a pequenas variações nas condições iniciais de um dado modelo. Neste trabalho, é feito um estudo acerca do comportamento caótico em dois casos específicos. Primeiramente, estudam-se modelos préinflacionários não-compactos de Friedmann-Robertson-Walker com campo escalar minimamente acoplado e, em seguida, modelos anisotrópicos de Bianchi IX. Em ambos os casos, o componente material é um fluido perfeito. Tais modelos possuem constante cosmológica e podem ser estudados através de uma descrição unificada, a partir de transformações de variáveis convenientes. Estes sistemas possuem estruturas similares no espaço de fases, denominadas centros-sela, que fazem com que as soluções estejam contidas em hipersuperfícies cuja topologia é cilíndrica. Estas estruturas dominam a relação entre colapso e escape para a inflação, que podem ser tratadas como bacias cuja fronteira pode ser fractal, e que podem ser associadas a uma estrutura denominada repulsor estranho. Utilizando o método de contagem de caixas, são calculadas as dimensões características das fronteiras nos modelos, o que envolve técnicas e algoritmos de computação numérica, e tal método permite estudar o escape caótico para a inflação.
Resumo:
Neste trabalho aplicamos métodos espectrais para a determinação da configuração inicial de três espaços-tempos contendo buracos negros. Para isto apresentamos primeiro a foliação do espaço-tempo em hipersuperfícies tridimensionais espaciais parametrizadas pela função temporal t. Este processo é chamado de decomposição 3+1 [2] [5]. O resultado deste processo são dois conjuntos de equações classificadas em equações de vínculo e evolução [4]. As equações de vínculo podem ser divididas em vínculos Hamiltoniano e dos momentos. Para a obtenção dos dados iniciais dos problemas estudados aqui, apenas a equação de vínculo Hamiltoniano será resolvida numericamente, pois as equações de vínculo dos momentos possuem solução analítica nestes casos. Uma pequena descrição dos métodos espectrais é apresentada, destacando-se os método de Galerkin, método pseudoespectral ou de colocação e método de Tau, que são empregados na resolução das equações de vínculo Hamiltoniano dos problemas estudados. Verificamos que os resultados obtidos neste trabalho superam aqueles produzidos por Kidder e Finn [15], devido a uma escolha diferente das funções de base, que aqui satisfazem uma das condições de contorno.