2 resultados para Heuristic Algorithms
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
Neste trabalho, é proposta uma nova família de métodos a ser aplicada à otimização de problemas multimodais. Nestas técnicas, primeiramente são geradas soluções iniciais com o intuito de explorar o espaço de busca. Em seguida, com a finalidade de encontrar mais de um ótimo, estas soluções são agrupadas em subespaços utilizando um algoritmo de clusterização nebulosa. Finalmente, são feitas buscas locais através de métodos determinísticos de otimização dentro de cada subespaço gerado na fase anterior com a finalidade de encontrar-se o ótimo local. A família de métodos é formada por seis variantes, combinando três esquemas de inicialização das soluções na primeira fase e dois algoritmos de busca local na terceira. A fim de que esta nova família de métodos possa ser avaliada, seus constituintes são comparados com outras metodologias utilizando problemas da literatura e os resultados alcançados são promissores.
Resumo:
Com o passar do tempo, a demanda elétrica de diversas áreas varia tornando necessária a construção de novos geradores elétricos e a expansão da rede de transmissão de energia elétrica. Nesta dissertação, focamos no problema de expansão da rede de transmissão, assumindo que novos geradores estão construídos para suprir as novas demandas. Essa expansão exige altos investimentos que precisam ser cuidadosamente planejados. O problema pode ser modelado como um problema de otimização não linear inteira mista e pertence à classe dos problemas NP-difíceis. Desta forma, uma abordagem heurística pode ser adequada para a sua solução pois pode vir a fornecer boas soluções em tempo computacional aceitável. Esta dissertação se propõe a apresentar um estudo do problema de planejamento da expansão de redes de transmissão de energia elétrica estático e multiestágio. Mostramos o que já existe na literatura para o que é chamado de problema sem redimensionamento e as inovações feitas por nós para o problema com redimensionamento. Quanto aos métodos de solução, utilizamos a metaheurística GRASP para o problema estático e combinamos o GRASP com o procedimento Backward-Forward quando falamos em problema multiestágio. Nesta dissertação comparamos os resultados computacionais obtidos com resultados encontrados na literatura.