2 resultados para HPLC METHOD VALIDATION
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
Esse trabalho compreende dois diferentes estudos de caso: o primeiro foi a respeito de um medicamento para o qual foi desenvolvida uma metodologia para determinar norfloxacino (NOR) por espectrofluorimetria molecular e validação por HPLC. Primeiramente foi desenvolvida uma metodologia por espectrofluorimetria onde foram feitos alguns testes preliminares a fim de estabelecer qual valor de pH iria fornecer a maior intensidade de emissão. Após fixar o pH foi feita a determinação de NOR em padrões aquosos e soluções do medicamento usando calibração univariada. A faixa de concentração trabalhada foi de 0500 μg.L-1. O limite de detecção para o medicamento foi de 6,9 μg.L-1 enquanto que o de quantificação foi de 24,6 μg.L-1. Além dessas, outras figuras de mérito também foram estimadas para desenvolvimento da metodologia e obtiveram resultados muito satisfatórios, como por exemplo, os testes de recuperação no qual a recuperação do analito foi de 99.5 a 103.8%. Para identificação e quantificação do NOR da urina foi necessário diluir a amostra de urina (estudada em dois diferentes níveis de diluição: 500 e 1000 x) e também uso do método da adição de padrão (na mesma faixa de concentração usada para medicamento). Após a aquisição do espectro, todos foram usados para construção do tensor que seria usado no PARAFAC. Foi possível estimar as figuras de mérito como limite de detecção de 11.4 μg.L-1 and 8.4 μg.L-1 (diluição de 500 e 1000 x respectivamente) e limite de quantificação de 34 μg.L-1 e 25.6 μg.L-1 (diluição de 500 x e 1000 x respectivamente). O segundo estudo de caso foi na área alimentícia no qual se usou espectroscopia NIR e FT MIR acopladas a quimiometria para discriminar óleo de soja transgênica e não transgênica. Os espectros dos óleos não mostraram diferença significativa em termos visuais, sendo necessário usar ferramentas quimiométricas capazes de fazer essa distinção. Tanto para espectroscopia NIR quanto FT MIR foi feito o PCA a fim de identificar amostras discrepantes e que influenciariam o modelo de forma negativa. Após efetuar o PCA, foram usadas três diferentes técnicas para discriminar os óleos: SIMCA, SVM-DA e PLS-DA, sendo que para cada técnica foram usados também diferentes pré processamento. No NIR, apenas para um pré processamento se obteve resultados satisfatórios nas três técnicas, enquanto que para FT-MIR ao se usar PLS-DA se obteve 100% de acerto na classificação para todos os pré processamentos
Resumo:
O objetivo deste trabalho foi estabelecer um modelo empregando-se ferramentas de regressão multivariada para a previsão do teor em ésteres metílicos e, simultaneamente, de propriedades físico-químicas de misturas de óleo de soja e biodiesel de soja. O modelo foi proposto a partir da correlação das propriedades de interesse com os espectros de reflectância total atenuada no infravermelho médio das misturas. Para a determinação dos teores de ésteres metílicos foi utilizada a cromatografia líquida de alta eficiência (HPLC), podendo esta ser uma técnica alternativa aos método de referência que utilizam a cromatografia em fase gasosa (EN 14103 e EN 14105). As propriedades físico-químicas selecionadas foram índice de refração, massa específica e viscosidade. Para o estudo, foram preparadas 11 misturas com diferentes proporções de biodiesel de soja e de óleo de soja (0-100 % em massa de biodiesel de soja), em quintuplicata, totalizando 55 amostras. A região do infravermelho estudada foi a faixa de 3801 a 650 cm-1. Os espectros foram submetidos aos pré-tratamentos de correção de sinal multiplicativo (MSC) e, em seguida, à centralização na média (MC). As propriedades de interesse foram submetidas ao autoescalamento. Em seguida foi aplicada análise de componentes principais (PCA) com a finalidade de reduzir a dimensionalidade dos dados e detectar a presença de valores anômalos. Quando estes foram detectados, a amostra era descartada. Os dados originais foram submetidos ao algoritmo de Kennard-Stone dividindo-os em um conjunto de calibração, para a construção do modelo, e um conjunto de validação, para verificar a sua confiabilidade. Os resultados mostraram que o modelo proposto por PLS2 (Mínimos Quadrados Parciais) foi capaz de se ajustar bem os dados de índice de refração e de massa específica, podendo ser observado um comportamento aleatório dos erros, indicando a presença de homocedasticidade nos valores residuais, em outras palavras, o modelo construído apresentou uma capacidade de previsão para as propriedades de massa específica e índice de refração com 95% de confiança. A exatidão do modelo foi também avaliada através da estimativa dos parâmetros de regressão que são a inclinação e o intercepto pela Região Conjunta da Elipse de Confiança (EJCR). Os resultados confirmaram que o modelo MIR-PLS desenvolvido foi capaz de prever, simultaneamente, as propriedades índice de refração e massa específica. Para os teores de éteres metílicos determinados por HPLC, foi também desenvolvido um modelo MIR-PLS para correlacionar estes valores com os espectros de MIR, porém a qualidade do ajuste não foi tão boa. Apesar disso, foi possível mostrar que os dados podem ser modelados e correlacionados com os espectros de infravermelho utilizando calibração multivariada