5 resultados para Generalized Least Squares Estimation

em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho apresenta um estudo teórico e numérico sobre os erros que ocorrem nos cálculos de gradientes em malhas não estruturadas constituídas pelo diagrama de Voronoi, malhas estas, formadas também pela triangulação de Delaunay. As malhas adotadas, no trabalho, foram as malhas cartesianas e as malhas triangulares, esta última é gerada pela divisão de um quadrado em dois ou quatro triângulos iguais. Para tal análise, adotamos a escolha de três metodologias distintas para o cálculo dos gradientes: método de Green Gauss, método do Mínimo Resíduo Quadrático e método da Média do Gradiente Projetado Corrigido. O texto se baseia em dois enfoques principais: mostrar que as equações de erros dadas pelos gradientes podem ser semelhantes, porém com sinais opostos, para pontos de cálculos em volumes vizinhos e que a ordem do erro das equações analíticas pode ser melhorada em malhas uniformes quando comparada as não uniformes, nos casos unidimensionais, e quando analisada na face de tais volumes vizinhos nos casos bidimensionais.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho de pesquisa descreve três estudos de utilização de métodos quimiométricos para a classificação e caracterização de óleos comestíveis vegetais e seus parâmetros de qualidade através das técnicas de espectrometria de absorção molecular no infravermelho médio com transformada de Fourier e de espectrometria no infravermelho próximo, e o monitoramento da qualidade e estabilidade oxidativa do iogurte usando espectrometria de fluorescência molecular. O primeiro e segundo estudos visam à classificação e caracterização de parâmetros de qualidade de óleos comestíveis vegetais utilizando espectrometria no infravermelho médio com transformada de Fourier (FT-MIR) e no infravermelho próximo (NIR). O algoritmo de Kennard-Stone foi usado para a seleção do conjunto de validação após análise de componentes principais (PCA). A discriminação entre os óleos de canola, girassol, milho e soja foi investigada usando SVM-DA, SIMCA e PLS-DA. A predição dos parâmetros de qualidade, índice de refração e densidade relativa dos óleos, foi investigada usando os métodos de calibração multivariada dos mínimos quadrados parciais (PLS), iPLS e SVM para os dados de FT-MIR e NIR. Vários tipos de pré-processamentos, primeira derivada, correção do sinal multiplicativo (MSC), dados centrados na média, correção do sinal ortogonal (OSC) e variação normal padrão (SNV) foram utilizados, usando a raiz quadrada do erro médio quadrático de validação cruzada (RMSECV) e de predição (RMSEP) como parâmetros de avaliação. A metodologia desenvolvida para determinação de índice de refração e densidade relativa e classificação dos óleos vegetais é rápida e direta. O terceiro estudo visa à avaliação da estabilidade oxidativa e qualidade do iogurte armazenado a 4C submetido à luz direta e mantido no escuro, usando a análise dos fatores paralelos (PARAFAC) na luminescência exibida por três fluoróforos presentes no iogurte, onde pelo menos um deles está fortemente relacionado com as condições de armazenamento. O sinal fluorescente foi identificado pelo espectro de emissão e excitação das substâncias fluorescentes puras, que foram sugeridas serem vitamina A, triptofano e riboflavina. Modelos de regressão baseados nos escores do PARAFAC para a riboflavina foram desenvolvidos usando os escores obtidos no primeiro dia como variável dependente e os escores obtidos durante o armazenamento como variável independente. Foi visível o decaimento da curva analítica com o decurso do tempo da experimentação. Portanto, o teor de riboflavina pode ser considerado um bom indicador para a estabilidade do iogurte. Assim, é possível concluir que a espectroscopia de fluorescência combinada com métodos quimiométricos é um método rápido para monitorar a estabilidade oxidativa e a qualidade do iogurte

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A discriminação de fases que são praticamente indistinguíveis ao microscópio ótico de luz refletida ou ao microscópio eletrônico de varredura (MEV) é um dos problemas clássicos da microscopia de minérios. Com o objetivo de resolver este problema vem sendo recentemente empregada a técnica de microscopia colocalizada, que consiste na junção de duas modalidades de microscopia, microscopia ótica e microscopia eletrônica de varredura. O objetivo da técnica é fornecer uma imagem de microscopia multimodal, tornando possível a identificação, em amostras de minerais, de fases que não seriam distinguíveis com o uso de uma única modalidade, superando assim as limitações individuais dos dois sistemas. O método de registro até então disponível na literatura para a fusão das imagens de microscopia ótica e de microscopia eletrônica de varredura é um procedimento trabalhoso e extremamente dependente da interação do operador, uma vez que envolve a calibração do sistema com uma malha padrão a cada rotina de aquisição de imagens. Por esse motivo a técnica existente não é prática. Este trabalho propõe uma metodologia para automatizar o processo de registro de imagens de microscopia ótica e de microscopia eletrônica de varredura de maneira a aperfeiçoar e simplificar o uso da técnica de microscopia colocalizada. O método proposto pode ser subdividido em dois procedimentos: obtenção da transformação e registro das imagens com uso desta transformação. A obtenção da transformação envolve, primeiramente, o pré-processamento dos pares de forma a executar um registro grosseiro entre as imagens de cada par. Em seguida, são obtidos pontos homólogos, nas imagens óticas e de MEV. Para tal, foram utilizados dois métodos, o primeiro desenvolvido com base no algoritmo SIFT e o segundo definido a partir da varredura pelo máximo valor do coeficiente de correlação. Na etapa seguinte é calculada a transformação. Foram empregadas duas abordagens distintas: a média ponderada local (LWM) e os mínimos quadrados ponderados com polinômios ortogonais (MQPPO). O LWM recebe como entradas os chamados pseudo-homólogos, pontos que são forçadamente distribuídos de forma regular na imagem de referência, e que revelam, na imagem a ser registrada, os deslocamentos locais relativos entre as imagens. Tais pseudo-homólogos podem ser obtidos tanto pelo SIFT como pelo método do coeficiente de correlação. Por outro lado, o MQPPO recebe um conjunto de pontos com a distribuição natural. A análise dos registro de imagens obtidos empregou como métrica o valor da correlação entre as imagens obtidas. Observou-se que com o uso das variantes propostas SIFT-LWM e SIFT-Correlação foram obtidos resultados ligeiramente superiores aos do método com a malha padrão e LWM. Assim, a proposta, além de reduzir drasticamente a intervenção do operador, ainda possibilitou resultados mais precisos. Por outro lado, o método baseado na transformação fornecida pelos mínimos quadrados ponderados com polinômios ortogonais mostrou resultados inferiores aos produzidos pelo método que faz uso da malha padrão.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O biodiesel tem sido amplamente utilizado como uma fonte de energia renovável, que contribui para a diminuição de demanda por diesel mineral. Portanto, existem várias propriedades que devem ser monitoradas, a fim de produzir e distribuir biodiesel com a qualidade exigida. Neste trabalho, as propriedades físicas do biodiesel, tais como massa específica, índice de refração e ponto de entupimento de filtro a frio foram medidas e associadas a espectrometria no infravermelho próximo (NIR) e espectrometria no infravermelho médio (Mid-IR) utilizando ferramentas quimiométricas. Os métodos de regressão por mínimos quadrados parciais (PLS), regressão de mínimos quadrados parciais por intervalos (iPLS), e regressão por máquinas de vetor de suporte (SVM) com seleção de variáveis por Algoritmo Genético (GA) foram utilizadas para modelar as propriedades mencionadas. As amostras de biodiesel foram sintetizadas a partir de diferentes fontes, tais como canola, girassol, milho e soja. Amostras adicionais de biodiesel foram adquiridas de um fornecedor da região sul do Brasil. Em primeiro lugar, o pré-processamento de correção de linha de base foi usado para normalizar os dados espectrais de NIR, seguidos de outros tipos de pré-processamentos que foram aplicados, tais como centralização dos dados na média, 1 derivada e variação de padrão normal. O melhor resultado para a previsão do ponto de entupimento de filtro a frio foi utilizando os espectros de Mid-IR e o método de regressão GA-SVM, com alto coeficiente de determinação da previsão, R2Pred=0,96 e baixo valor da Raiz Quadrada do Erro Médio Quadrático da previsão, RMSEP (C)= 0,6. Para o modelo de previsão da massa específica, o melhor resultado foi obtido utilizando os espectros de Mid-IR e regressão por PLS, com R2Pred=0,98 e RMSEP (g/cm3)= 0,0002. Quanto ao modelo de previsão para o índice de refração, o melhor resultado foi obtido utilizando os espectros de Mid-IR e regressão por PLS, com excelente R2Pred=0,98 e RMSEP= 0,0001. Para esses conjuntos de dados, o PLS e o SVM demonstraram sua robustez, apresentando-se como ferramentas úteis para a previsão das propriedades do biodiesel estudadas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste trabalho foi estabelecer um modelo empregando-se ferramentas de regressão multivariada para a previsão do teor em ésteres metílicos e, simultaneamente, de propriedades físico-químicas de misturas de óleo de soja e biodiesel de soja. O modelo foi proposto a partir da correlação das propriedades de interesse com os espectros de reflectância total atenuada no infravermelho médio das misturas. Para a determinação dos teores de ésteres metílicos foi utilizada a cromatografia líquida de alta eficiência (HPLC), podendo esta ser uma técnica alternativa aos método de referência que utilizam a cromatografia em fase gasosa (EN 14103 e EN 14105). As propriedades físico-químicas selecionadas foram índice de refração, massa específica e viscosidade. Para o estudo, foram preparadas 11 misturas com diferentes proporções de biodiesel de soja e de óleo de soja (0-100 % em massa de biodiesel de soja), em quintuplicata, totalizando 55 amostras. A região do infravermelho estudada foi a faixa de 3801 a 650 cm-1. Os espectros foram submetidos aos pré-tratamentos de correção de sinal multiplicativo (MSC) e, em seguida, à centralização na média (MC). As propriedades de interesse foram submetidas ao autoescalamento. Em seguida foi aplicada análise de componentes principais (PCA) com a finalidade de reduzir a dimensionalidade dos dados e detectar a presença de valores anômalos. Quando estes foram detectados, a amostra era descartada. Os dados originais foram submetidos ao algoritmo de Kennard-Stone dividindo-os em um conjunto de calibração, para a construção do modelo, e um conjunto de validação, para verificar a sua confiabilidade. Os resultados mostraram que o modelo proposto por PLS2 (Mínimos Quadrados Parciais) foi capaz de se ajustar bem os dados de índice de refração e de massa específica, podendo ser observado um comportamento aleatório dos erros, indicando a presença de homocedasticidade nos valores residuais, em outras palavras, o modelo construído apresentou uma capacidade de previsão para as propriedades de massa específica e índice de refração com 95% de confiança. A exatidão do modelo foi também avaliada através da estimativa dos parâmetros de regressão que são a inclinação e o intercepto pela Região Conjunta da Elipse de Confiança (EJCR). Os resultados confirmaram que o modelo MIR-PLS desenvolvido foi capaz de prever, simultaneamente, as propriedades índice de refração e massa específica. Para os teores de éteres metílicos determinados por HPLC, foi também desenvolvido um modelo MIR-PLS para correlacionar estes valores com os espectros de MIR, porém a qualidade do ajuste não foi tão boa. Apesar disso, foi possível mostrar que os dados podem ser modelados e correlacionados com os espectros de infravermelho utilizando calibração multivariada