4 resultados para Fuzzy linear programming
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
Redes de trocadores de calor são bastante utilizadas na indústria química para promover a integração energética do processo, recuperando calor de correntes quentes para aquecer correntes frias. Estas redes estão sujeitas à deposição, o que causa um aumento na resistência à transferência de calor, prejudicando-a. Uma das principais formas de diminuir o prejuízo causado por este fenômeno é a realização periódica de limpezas nos trocadores de calor. O presente trabalho tem como objetivo desenvolver um novo método para encontrar a programação ótima das limpezas em uma rede de trocadores de calor. O método desenvolvido utiliza o conceito de horizonte deslizante associado a um problema de programação linear inteira mista (MILP). Este problema MILP é capaz de definir o conjunto ótimo de trocadores de calor a serem limpos em um determinado instante de tempo (primeiro instante do horizonte deslizante), levando em conta sua influência nos instantes futuros (restante do horizonte deslizante). O problema MILP utiliza restrições referentes aos balanços de energia, equações de trocadores de calor e número máximo de limpezas simultâneas, com o objetivo de minimizar o consumo de energia da planta. A programação ótima das limpezas é composta pela combinação dos resultados obtidos em cada um dos instantes de tempo.O desempenho desta abordagem foi analisado através de sua aplicação em diversos exemplos típicos apresentados na literatura, inclusive um exemplo de grande porte de uma refinaria brasileira. Os resultados mostraram que a abordagem aplicada foi capaz de prover ganhos semelhantes e, algumas vezes, superiores aos da literatura, indicando que o método desenvolvido é capaz de fornecer bons resultados com um baixo esforço computacional
Resumo:
Este trabalho investiga a implementação de sistemas fuzzy com circuitos eletrônicos. Tais sistemas têm demonstrado sua capacidade de resolver diversos tipos de problemas em várias aplicações de engenharia, em especial nas relacionadas com controle de processos. Para processos mais complexos, o raciocínio aproximado da lógica fuzzy fornece uma maneira de compreender o comportamento do sistema, permitindo a interpolação aproximada entre situações observadas de entrada e saída. A implementação de um sistema fuzzy pode ser baseada em hardware, em software ou em ambos. Tipicamente, as implementações em software utilizam ambientes de programação integrados com simulação, de modo a facilitar o trabalho do projetista. As implementações em hardware, tradicionais ou evolutivas, podem ser analógicas ou digitais e viabilizam sistemas de maior desempenho. Este trabalho tem por objetivo pesquisar a implementação eletrônica de sistemas fuzzy, a fim de viabilizar a criação de sistemas reais capazes de realizar o mapeamento de entrada e saída adequado. O foco é a utilização de uma plataforma com uma arquitetura analógico-digital baseada em uma tabela de mapeamento armazenada em uma memória de alta capacidade. Memórias do tipo SD (Secure Digital) foram estudadas e utilizadas na construção do protótipo eletrônico da plataforma. Também foram desenvolvidos estudos sobre a quantização, especificamente sobre a possibilidade de redução do número de bits. Com a implementação realizada é possível desenvolver um sistema fuzzy num ambiente simulado (Matlab), configurar a plataforma e executar o sistema fuzzy diretamente na plataforma eletrônica. Os testes com o protótipo construído comprovaram seu bom funcionamento.
Resumo:
Esta dissertação apresenta um sistema de indução de classificadores fuzzy. Ao invés de utilizar a abordagem tradicional de sistemas fuzzy baseados em regras, foi utilizado o modelo de Árvore de Padrões Fuzzy(APF), que é um modelo hierárquico, com uma estrutura baseada em árvores que possuem como nós internos operadores lógicos fuzzy e as folhas são compostas pela associação de termos fuzzy com os atributos de entrada. O classificador foi obtido sintetizando uma árvore para cada classe, esta árvore será uma descrição lógica da classe o que permite analisar e interpretar como é feita a classificação. O método de aprendizado originalmente concebido para a APF foi substituído pela Programação Genética Cartesiana com o intuito de explorar melhor o espaço de busca. O classificador APF foi comparado com as Máquinas de Vetores de Suporte, K-Vizinhos mais próximos, florestas aleatórias e outros métodos Fuzzy-Genéticos em diversas bases de dados do UCI Machine Learning Repository e observou-se que o classificador APF apresenta resultados competitivos. Ele também foi comparado com o método de aprendizado original e obteve resultados comparáveis com árvores mais compactas e com um menor número de avaliações.
Resumo:
Esta dissertação testa e compara dois tipos de modelagem para previsão de uma mesma série temporal. Foi observada uma série temporal de distribuição de energia elétrica e, como estudo de caso, optou-se pela região metropolitana do Estado da Bahia. Foram testadas as combinações de três variáveis exógenas em cada modelo: a quantidade de clientes ligados na rede de distribuição de energia elétrica, a temperatura ambiente e a precipitação de chuvas. O modelo linear de previsão de séries temporais utilizado foi um SARIMAX. A modelagem de inteligência computacional utilizada para a previsão da série temporal foi um sistema de Inferência Fuzzy. Na busca de um melhor desempenho, foram feitos testes de quais variáveis exógenas melhor influenciam no comportamento da energia distribuída em cada modelo. Segundo a avaliação dos testes, o sistema Fuzzy de previsão foi o que obteve o menor erro. Porém dentre os menores erros, os resultados dos testes também indicaram diferentes variáveis exógenas para cada modelo de previsão.