5 resultados para Finite-dimensional discrete phase spaces

em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho, será considerado um problema de controle ótimo quadrático para a equação do calor em domínios retangulares com condição de fronteira do tipo Dirichlet é nos quais, a função de controle (dependente apenas no tempo) constitui um termo de fonte. Uma caracterização da solução ótima é obtida na forma de uma equação linear em um espaço de funções reais definidas no intervalo de tempo considerado. Em seguida, utiliza-se uma sequência de projeções em subespaços de dimensão finita para obter aproximações para o controle ótimo, o cada uma das quais pode ser gerada por um sistema linear de dimensão finita. A sequência de soluções aproximadas assim obtidas converge para a solução ótima do problema original. Finalmente, são apresentados resultados numéricos para domínios espaciais de dimensão 1.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neste trabalho, os efeitos de um campo magnético oblíquo externo no modelo de Gross- Neveu (2+1)-dimensional, que inclui as componentes paralela e perpendicular do campo em relação ao sistema, são estudados no contexto da simetria quiral e discreta do modelo. Nosso principal interesse está nos efeitos deste campo sobre o diagrama de fase do sistema, onde também incluímos os efeitos combinados de temperatura e potencial químico. Os diagramas de fase são obtidos através do potencial efetivo a 1 loop para o modelo, derivado em primeira ordem na expansão 1=N. Transições de fase relevantes que podem ser estudadas através deste modelo são, por exemplo, metal-isolante em matéria condensada e na teoria quântica de campos de férmions planares em geral. A relação entre a transição de fase com quebra da simetria quiral e discreta e o surgimento de um gap (ou a presença de um valor esperado no vácuo do campo escalar diferente de zero), como função do campo magnético oblíquo, é analisada em detalhes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O presente trabalho trata do escoamento bifásico em meios porosos heterogêneos de natureza fractal, onde os fluidos são considerados imiscíveis. Os meios porosos são modelados pela equação de Kozeny-Carman Generalizada (KCG), a qual relaciona a porosidade com a permeabilidade do meio através de uma nova lei de potência. Esta equação proposta por nós é capaz de generalizar diferentes modelos existentes na literatura e, portanto, é de uso mais geral. O simulador numérico desenvolvido aqui emprega métodos de diferenças finitas. A evolução temporal é baseada em um esquema de separação de operadores que segue a estratégia clássica chamada de IMPES. Assim, o campo de pressão é calculado implicitamente, enquanto que a equação da saturação da fase molhante é resolvida explicitamente em cada nível de tempo. O método de otimização denominado de DFSANE é utilizado para resolver a equação da pressão. Enfatizamos que o DFSANE nunca foi usado antes no contexto de simulação de reservatórios. Portanto, o seu uso aqui é sem precedentes. Para minimizar difusões numéricas, a equação da saturação é discretizada por um esquema do tipo "upwind", comumente empregado em simuladores numéricos para a recuperação de petróleo, o qual é resolvido explicitamente pelo método Runge-Kutta de quarta ordem. Os resultados das simulações são bastante satisfatórios. De fato, tais resultados mostram que o modelo KCG é capaz de gerar meios porosos heterogêneos, cujas características permitem a captura de fenômenos físicos que, geralmente, são de difícil acesso para muitos simuladores em diferenças finitas clássicas, como o chamado fenômeno de dedilhamento, que ocorre quando a razão de mobilidade (entre as fases fluidas) assume valores adversos. Em todas as simulações apresentadas aqui, consideramos que o problema imiscível é bidimensional, sendo, portanto, o meio poroso caracterizado por campos de permeabilidade e de porosidade definidos em regiões Euclideanas. No entanto, a teoria abordada neste trabalho não impõe restrições para sua aplicação aos problemas tridimensionais.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Um código computacional para escoamentos bifásicos incorporando metodologia híbrida entre oMétodo dos Elementos Finitos e a descrição Lagrangeana-Euleriana Arbitrária do movimento é usado para simular a dinâmica de um jato transversal de gotas na zona primária de quebra. Os corpos dispersos são descritos por meio de um método do tipo front-tracking que produz interfaces de espessura zero através de malhas formadas pela união de elementos adjacentes em ambas as fases e de técnicas de refinamento adaptativo. Condições de contorno periódicas são implementadas de modo variacionalmente consistente para todos os campos envolvidos nas simulações apresentadas e uma versão modificada do campo de pressão é adicionada à formulação do tipo um-fluido usada na equação da quantidade de movimento linear. Simulações numéricas diretas em três dimensões são executadas para diferentes configurações de líquidos imiscí veis compatíveis com resultados experimentais encontrados na literatura. Análises da hidrodinâmica do jato transversal de gotas nessas configurações considerando trajetórias, variação de formato de gota, espectro de pequenas perturbações, além de aspectos complementares relativos à qualidade de malha são apresentados e discutidos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Métodos de otimização que utilizam condições de otimalidade de primeira e/ou segunda ordem são conhecidos por serem eficientes. Comumente, esses métodos iterativos são desenvolvidos e analisados à luz da análise matemática do espaço euclidiano n-dimensional, cuja natureza é de caráter local. Consequentemente, esses métodos levam a algoritmos iterativos que executam apenas as buscas locais. Assim, a aplicação de tais algoritmos para o cálculo de minimizadores globais de uma função não linear,especialmente não-convexas e multimodais, depende fortemente da localização dos pontos de partida. O método de Otimização Global Topográfico é um algoritmo de agrupamento, que utiliza uma abordagem baseada em conceitos elementares da teoria dos grafos, a fim de gerar bons pontos de partida para os métodos de busca local, a partir de pontos distribuídos de modo uniforme no interior da região viável. Este trabalho tem dois objetivos. O primeiro é realizar uma nova abordagem sobre método de Otimização Global Topográfica, onde, pela primeira vez, seus fundamentos são formalmente descritos e suas propriedades básicas são matematicamente comprovadas. Neste contexto, propõe-se uma fórmula semi-empírica para calcular o parâmetro chave deste algoritmo de agrupamento, e, usando um método robusto e eficiente de direções viáveis por pontos-interiores, estendemos o uso do método de Otimização Global Topográfica a problemas com restrições de desigualdade. O segundo objetivo é a aplicação deste método para a análise de estabilidade de fase em misturas termodinâmicas,o qual consiste em determinar se uma dada mistura se apresenta em uma ou mais fases. A solução deste problema de otimização global é necessária para o cálculo do equilíbrio de fases, que é um problema de grande importância em processos da engenharia, como, por exemplo, na separação por destilação, em processos de extração e simulação da recuperação terciária de petróleo, entre outros. Além disso, afim de ter uma avaliação inicial do potencial dessa técnica, primeiro vamos resolver 70 problemas testes, e então comparar o desempenho do método proposto aqui com o solver MIDACO, um poderoso software recentemente introduzido no campo da otimização global.