73 resultados para Escoamento instável (Dinâmica dos fluidos) - Modelosmatemáticos
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
Nesse trabalho, foi desenvolvido um simulador numérico (C/C++) para a resolução de escoamentos de fluidos newtonianos incompressíveis, baseado no método de partículas Lagrangiano, livre de malhas, Smoothed Particle Hydrodynamics (SPH). Tradicionalmente, duas estratégias são utilizadas na determinação do campo de pressões de forma a garantir-se a condição de incompressibilidade do fluido. A primeira delas é a formulação chamada Weak Compressible Smoothed Particle Hydrodynamics (WCSPH), onde uma equação de estado para um fluido quase-incompressível é utilizada na determinação do campo de pressões. A segunda, emprega o Método da Projeção e o campo de pressões é obtido mediante a resolução de uma equação de Poisson. No estudo aqui desenvolvido, propõe-se três métodos iterativos, baseados noMétodo da Projeção, para o cálculo do campo de pressões, Incompressible Smoothed Particle Hydrodynamics (ISPH). A fim de validar os métodos iterativos e o código computacional, foram simulados dois problemas unidimensionais: os escoamentos de Couette entre duas placas planas paralelas infinitas e de Poiseuille em um duto infinito e foram usadas condições de contorno do tipo periódicas e partículas fantasmas. Um problema bidimensional, o escoamento no interior de uma cavidade com a parede superior posta em movimento, também foi considerado. Na resolução deste problema foi utilizado o reposicionamento periódico de partículas e partículas fantasmas.
Resumo:
Este trabalho objetiva a construção de estruturas robustas e computacionalmente eficientes para a solução do problema de deposição de parafinas do ponto de vista do equilíbrio sólido-líquido. São avaliados diversos modelos termodinâmicos para a fase líquida: equação de estado de Peng-Robinson e os modelos de coeficiente de atividade de Solução Ideal, Wilson, UNIQUAC e UNIFAC. A fase sólida é caracterizada pelo modelo Multisólido. A previsão de formação de fase sólida é inicialmente prevista por um teste de estabilidade termodinâmica. Posteriormente, o sistema de equações não lineares que caracteriza o equilíbrio termodinâmico e as equações de balanço material é resolvido por três abordagens numéricas: método de Newton multivariável, método de Broyden e método Newton-Armijo. Diversos experimentos numéricos foram conduzidos de modo a avaliar os tempos de computação e a robustez frente a diversos cenários de estimativas iniciais dos métodos numéricos para os diferentes modelos e diferentes misturas. Os resultados indicam para a possibilidade de construção de arcabouços computacionais eficientes e robustos, que podem ser empregados acoplados a simuladores de escoamento em dutos, por exemplo.
Resumo:
A Amazônia exibe uma variedade de cenários que se complementam. Parte desse ecossistema sofre anualmente severas alterações em seu ciclo hidrológico, fazendo com que vastos trechos de floresta sejam inundados. Esse fenômeno, entretanto, é extremamente importante para a manutenção de ciclos naturais. Neste contexto, compreender a dinâmica das áreas alagáveis amazônicas é importante para antecipar o efeito de ações não sustentáveis. Sob esta motivação, este trabalho estuda um modelo de escoamento em áreas alagáveis amazônicas, baseado nas equações de Navier-Stokes, além de ferramentas que possam ser aplicadas ao modelo, favorecendo uma nova abordagem do problema. Para a discretização das equações é utilizado o Método dos Volumes Finitos, sendo o Método do Gradiente Conjugado a técnica escolhida para resolver os sistemas lineares associados. Como técnica de resolução numérica das equações, empregou-se o Método Marker and Cell, procedimento explícito para solução das equações de Navier-Stokes. Por fim, as técnicas são aplicadas a simulações preliminares utilizando a estrutura de dados Autonomous Leaves Graph, que tem recursos adaptativos para manipulação da malha que representa o domínio do problema
Resumo:
Os métodos numéricos convencionais, baseados em malhas, têm sido amplamente aplicados na resolução de problemas da Dinâmica dos Fluidos Computacional. Entretanto, em problemas de escoamento de fluidos que envolvem superfícies livres, grandes explosões, grandes deformações, descontinuidades, ondas de choque etc., estes métodos podem apresentar algumas dificuldades práticas quando da resolução destes problemas. Como uma alternativa viável, existem os métodos de partículas livre de malhas. Neste trabalho é feita uma introdução ao método Lagrangeano de partículas, livre de malhas, Smoothed Particle Hydrodynamics (SPH) voltado para a simulação numérica de escoamentos de fluidos newtonianos compressíveis e quase-incompressíveis. Dois códigos numéricos foram desenvolvidos, uma versão serial e outra em paralelo, empregando a linguagem de programação C/C++ e a Compute Unified Device Architecture (CUDA), que possibilita o processamento em paralelo empregando os núcleos das Graphics Processing Units (GPUs) das placas de vídeo da NVIDIA Corporation. Os resultados numéricos foram validados e a eficiência computacional avaliada considerandose a resolução dos problemas unidimensionais Shock Tube e Blast Wave e bidimensional da Cavidade (Shear Driven Cavity Problem).
Resumo:
Neste trabalho, foi desenvolvido um simulador numérico baseado no método livre de malhas Smoothed Particle Hydrodynamics (SPH) para a resolução de escoamentos de fluidos newtonianos incompressíveis. Diferentemente da maioria das versões existentes deste método, o código numérico faz uso de uma técnica iterativa na determinação do campo de pressões. Este procedimento emprega a forma diferencial de uma equação de estado para um fluido compressível e a equação da continuidade a fim de que a correção da pressão seja determinada. Uma versão paralelizada do simulador numérico foi implementada usando a linguagem de programação C/C++ e a Compute Unified Device Architecture (CUDA) da NVIDIA Corporation. Foram simulados três problemas, o problema unidimensional do escoamento de Couette e os problemas bidimensionais do escoamento no interior de uma Cavidade (Shear Driven Cavity Problem) e da Quebra de Barragem (Dambreak).
Resumo:
Turbomáquinas são máquinas operacionais que transferem energia mecânica entre um rotor e um fluido. Estas máquinas têm muitas aplicações industriais. Um dos componentes de uma turbomáquina responsável pela transferência da energia, ou receber a rotação do eixo e transformar em energia de fluido em caso de bomba ou transferir a energia do fluido para o eixo em caso de uma turbina, é o impelidor ou rotor. O fenómeno da cavitação envolve escoamento bifásico: o líquido a ser bombeado e as bolhas de vapor que são formadas durante o processo de bombeamento. O processo de formação dessas bolhas é complexo, mas ocorre principalmente devido a presença de regiões de pressões muito baixas. O colapso dessas bolhas pode muitas vezes levar a deterioração do material, dependendo da intensidade ou da velocidade de colapso das bolhas. O principal objetivo deste trabalho foi estudar o comportamento hidrodinâmico do escoamento nos canais do impelidor de uma turbomáquina do tipo radial usando recursos de fluidodinâmica computacional (CFD). Uma abordagem Euler-Lagrange acoplada com o modelo da equação de Langevin foi empregada para estimar a trajetória das bolhas. Resultados das simulações mostram as particularidades de um escoamento líquido-bolha de vapor passando em um canal de geometria curva, fornecendo assim informações que podem nos ajudar na prevenção da cavitação nessas máquinas.
Resumo:
As análises de erros são conduzidas antes de qualquer projeto a ser desenvolvido. A necessidade do conhecimento do comportamento do erro numérico em malhas estruturadas e não-estruturadas surge com o aumento do uso destas malhas nos métodos de discretização. Desta forma, o objetivo deste trabalho foi criar uma metodologia para analisar os erros de discretização gerados através do truncamento na Série de Taylor, aplicados às equações de Poisson e de Advecção-Difusão estacionárias uni e bidimensionais, utilizando-se o Método de Volumes Finitos em malhas do tipo Voronoi. A escolha dessas equações se dá devido a sua grande utilização em testes de novos modelos matemáticos e função de interpolação. Foram usados os esquemas Central Difference Scheme (CDS) e Upwind Difference Scheme(UDS) nos termos advectivos. Verificou-se a influência do tipo de condição de contorno e a posição do ponto gerador do volume na solução numérica. Os resultados analíticos foram confrontados com resultados experimentais para dois tipos de malhas de Voronoi, uma malha cartesiana e outra triangular comprovando a influência da forma do volume finito na solução numérica obtida. Foi percebido no estudo que a discretização usando o esquema CDS tem erros menores do que a discretização usando o esquema UDS conforme literatura. Também se percebe a diferença nos erros em volumes vizinhos nas malhas triangulares o que faz com que não se tenha uma uniformidade nos gráficos dos erros estudados. Percebeu-se que as malhas cartesianas com nó no centróide do volume tem menor erro de discretização do que malhas triangulares. Mas o uso deste tipo de malha depende da geometria do problema estudado
Resumo:
A engenharia geotécnica é uma das grandes áreas da engenharia civil que estuda a interação entre as construções realizadas pelo homem ou de fenômenos naturais com o ambiente geológico, que na grande maioria das vezes trata-se de solos parcialmente saturados. Neste sentido, o desempenho de obras como estabilização, contenção de barragens, muros de contenção, fundações e estradas estão condicionados a uma correta predição do fluxo de água no interior dos solos. Porém, como a área das regiões a serem estudas com relação à predição do fluxo de água são comumente da ordem de quilômetros quadrados, as soluções dos modelos matemáticos exigem malhas computacionais de grandes proporções, ocasionando sérias limitações associadas aos requisitos de memória computacional e tempo de processamento. A fim de contornar estas limitações, métodos numéricos eficientes devem ser empregados na solução do problema em análise. Portanto, métodos iterativos para solução de sistemas não lineares e lineares esparsos de grande porte devem ser utilizados neste tipo de aplicação. Em suma, visto a relevância do tema, esta pesquisa aproximou uma solução para a equação diferencial parcial de Richards pelo método dos volumes finitos em duas dimensões, empregando o método de Picard e Newton com maior eficiência computacional. Para tanto, foram utilizadas técnicas iterativas de resolução de sistemas lineares baseados no espaço de Krylov com matrizes pré-condicionadoras com a biblioteca numérica Portable, Extensible Toolkit for Scientific Computation (PETSc). Os resultados indicam que quando se resolve a equação de Richards considerando-se o método de PICARD-KRYLOV, não importando o modelo de avaliação do solo, a melhor combinação para resolução dos sistemas lineares é o método dos gradientes biconjugados estabilizado mais o pré-condicionador SOR. Por outro lado, quando se utiliza as equações de van Genuchten deve ser optar pela combinação do método dos gradientes conjugados em conjunto com pré-condicionador SOR. Quando se adota o método de NEWTON-KRYLOV, o método gradientes biconjugados estabilizado é o mais eficiente na resolução do sistema linear do passo de Newton, com relação ao pré-condicionador deve-se dar preferência ao bloco Jacobi. Por fim, há evidências que apontam que o método PICARD-KRYLOV pode ser mais vantajoso que o método de NEWTON-KRYLOV, quando empregados na resolução da equação diferencial parcial de Richards.
Resumo:
Em uma grande gama de problemas físicos, governados por equações diferenciais, muitas vezes é de interesse obter-se soluções para o regime transiente e, portanto, deve-se empregar técnicas de integração temporal. Uma primeira possibilidade seria a de aplicar-se métodos explícitos, devido à sua simplicidade e eficiência computacional. Entretanto, esses métodos frequentemente são somente condicionalmente estáveis e estão sujeitos a severas restrições na escolha do passo no tempo. Para problemas advectivos, governados por equações hiperbólicas, esta restrição é conhecida como a condição de Courant-Friedrichs-Lewy (CFL). Quando temse a necessidade de obter soluções numéricas para grandes períodos de tempo, ou quando o custo computacional a cada passo é elevado, esta condição torna-se um empecilho. A fim de contornar esta restrição, métodos implícitos, que são geralmente incondicionalmente estáveis, são utilizados. Neste trabalho, foram aplicadas algumas formulações implícitas para a integração temporal no método Smoothed Particle Hydrodynamics (SPH) de modo a possibilitar o uso de maiores incrementos de tempo e uma forte estabilidade no processo de marcha temporal. Devido ao alto custo computacional exigido pela busca das partículas a cada passo no tempo, esta implementação só será viável se forem aplicados algoritmos eficientes para o tipo de estrutura matricial considerada, tais como os métodos do subespaço de Krylov. Portanto, fez-se um estudo para a escolha apropriada dos métodos que mais se adequavam a este problema, sendo os escolhidos os métodos Bi-Conjugate Gradient (BiCG), o Bi-Conjugate Gradient Stabilized (BiCGSTAB) e o Quasi-Minimal Residual (QMR). Alguns problemas testes foram utilizados a fim de validar as soluções numéricas obtidas com a versão implícita do método SPH.
Resumo:
A teoria magneto-hidrodinâmicos permite a estruturação de modelos computacionais, designados modelos MHDs, que são uma extensão da dinâmica dos fluidos para lidar com fluidos eletricamente carregados, tais como os plasmas, em que se precisa considerar os efeitos de forças eletromagnéticas. Tais modelos são especialmente úteis quando o movimento exato de uma partícula não é de interesse, sendo que as equações descrevem as evoluções de quantidades macroscópicas. Várias formas de modelos MHD têm sido amplamente utilizadas na Física Espacial para descrever muitos tipos diferentes de fenômenos de plasma, tais como reconexão magnética e interações de ventos estelares com diferentes objetos celestiais. Neste trabalho, o objetivo é analisar o comportamento de diversos fluxos numéricos em uma discretização de volumes finitos de um modelo numérico de MHD usando um esquema de malha entrelaçada sem separação direcional considerando alguns casos testes. Para as simulações, utiliza-se o código Flash, desenvolvido pela Universidade de Chicago, por ser um código de amplo interesse nas simulações astrofísicas e de fenômenos no espaço próximo à Terra. A metodologia consiste na inclusão de um fluxo numérico, permitindo melhoria com respeito ao esquema HLL.
Resumo:
O desenvolvimento de software livre de Jacobiana para a resolução de problemas formulados por equações diferenciais parciais não-lineares é de interesse crescente para simular processos práticos de engenharia. Este trabalho utiliza o chamado algoritmo espectral livre de derivada para equações não-lineares na simulação de fluxos em meios porosos. O modelo aqui considerado é aquele empregado para descrever o deslocamento do fluido compressível miscível em meios porosos com fontes e sumidouros, onde a densidade da mistura de fluidos varia exponencialmente com a pressão. O algoritmo espectral utilizado é um método moderno para a solução de sistemas não-lineares de grande porte, o que não resolve sistemas lineares, nem usa qualquer informação explícita associados com a matriz Jacobiana, sendo uma abordagem livre de Jacobiana. Problemas bidimensionais são apresentados, juntamente com os resultados numéricos comparando o algoritmo espectral com um método de Newton inexato livre de Jacobiana. Os resultados deste trabalho mostram que este algoritmo espectral moderno é um método confiável e eficiente para a simulação de escoamentos compressíveis em meios porosos.
Resumo:
O presente trabalho trata do escoamento bifásico em meios porosos heterogêneos de natureza fractal, onde os fluidos são considerados imiscíveis. Os meios porosos são modelados pela equação de Kozeny-Carman Generalizada (KCG), a qual relaciona a porosidade com a permeabilidade do meio através de uma nova lei de potência. Esta equação proposta por nós é capaz de generalizar diferentes modelos existentes na literatura e, portanto, é de uso mais geral. O simulador numérico desenvolvido aqui emprega métodos de diferenças finitas. A evolução temporal é baseada em um esquema de separação de operadores que segue a estratégia clássica chamada de IMPES. Assim, o campo de pressão é calculado implicitamente, enquanto que a equação da saturação da fase molhante é resolvida explicitamente em cada nível de tempo. O método de otimização denominado de DFSANE é utilizado para resolver a equação da pressão. Enfatizamos que o DFSANE nunca foi usado antes no contexto de simulação de reservatórios. Portanto, o seu uso aqui é sem precedentes. Para minimizar difusões numéricas, a equação da saturação é discretizada por um esquema do tipo "upwind", comumente empregado em simuladores numéricos para a recuperação de petróleo, o qual é resolvido explicitamente pelo método Runge-Kutta de quarta ordem. Os resultados das simulações são bastante satisfatórios. De fato, tais resultados mostram que o modelo KCG é capaz de gerar meios porosos heterogêneos, cujas características permitem a captura de fenômenos físicos que, geralmente, são de difícil acesso para muitos simuladores em diferenças finitas clássicas, como o chamado fenômeno de dedilhamento, que ocorre quando a razão de mobilidade (entre as fases fluidas) assume valores adversos. Em todas as simulações apresentadas aqui, consideramos que o problema imiscível é bidimensional, sendo, portanto, o meio poroso caracterizado por campos de permeabilidade e de porosidade definidos em regiões Euclideanas. No entanto, a teoria abordada neste trabalho não impõe restrições para sua aplicação aos problemas tridimensionais.
Resumo:
Uma simulação numérica que leva em conta os efeitos de estratificação e mistura escalar (como a temperatura, salinidade ou substância solúvel em água) é necessária para estudar e prever os impactos ambientais que um reservatório de usina hidrelétrica pode produzir. Este trabalho sugere uma metodologia para o estudo de escoamentos ambientais, principalmente aqueles em que o conhecimento da interação entre a estratificação e mistura pode dar noções importantes dos fenômenos que ocorrem. Por esta razão, ferramentas de simulação numérica 3D de escoamento ambiental são desenvolvidas. Um gerador de malha de tetraedros do reservatório e o modelo de turbulência algébrico baseado no número de Richardson são as principais ferramentas desenvolvidas. A principal dificuldade na geração de uma malha de tetraedros de um reservatório é a distribuição não uniforme dos pontos relacionada com a relação desproporcional entre as escalas horizontais e verticais do reservatório. Neste tipo de distribuição de pontos, o algoritmo convencional de geração de malha de tetraedros pode tornar-se instável. Por esta razão, um gerador de malha não estruturada de tetraedros é desenvolvido e a metodologia utilizada para obter elementos conformes é descrita. A geração de malha superficial de triângulos utilizando a triangulação Delaunay e a construção do tetraedros a partir da malha triangular são os principais passos para o gerador de malha. A simulação hidrodinâmica com o modelo de turbulência fornece uma ferramenta útil e computacionalmente viável para fins de engenharia. Além disso, o modelo de turbulência baseado no número de Richardson leva em conta os efeitos da interação entre turbulência e estratificação. O modelo algébrico é o mais simples entre os diversos modelos de turbulência. Mas, fornece resultados realistas com o ajuste de uma pequena quantidade de parâmetros. São incorporados os modelos de viscosidade/difusividade turbulenta para escoamento estratificado. Na aproximação das equações médias de Reynolds e transporte de escalar é utilizando o Método dos Elementos Finitos. Os termos convectivos são aproximados utilizando o método semi-Lagrangeano, e a aproximação espacial é baseada no método de Galerkin. Os resultados computacionais são comparados com os resultados disponíveis na literatura. E, finalmente, a simulação de escoamento em um braço de reservatório é apresentada.
Resumo:
Fanerógamas marinhas (gramas marinhas) são plantas com flores adaptadas ao ambiente marinho costeiro da maioria dos continentes do mundo. As gramas marinhas formam extensos bancos e proveem valiosos recursos em águas costeiras rasas em todo o mundo, servindo de alimento e berçário para espécies importantes de pescados comerciais e recreacionais. Nesse estudo foi realizada uma revisão sobre o estado de conhecimento das fanerógamas marinhas no Brasil até o presente momento; avaliou-se a importância do monitoramento em longo prazo e a influência de fatores ambientais, como o número de manchas solares; pesquisou-se também a distribuição espacial da grama marinha, bem como a fauna e flora associada; e o crescimento de Halodule wrightii em duas condições ambientais extremas (exposta no ciclo de maré baixa e permanentemente submersa). A revisão bibliográfica sobre as gramas marinhas foi abrangente e verificou a existência de algumas lacunas no conhecimento. Através do monitoramento a longo prazo pôde ser observado que o número de manchas solares tem forte relação negativa sobre a altura do dossel das gramas marinhas de região entre marés. A variação de marés na região de mediolitoral está relacionada diretamente com a distribuição espacial de Halodule wrightii e, consequentemente na distribuição da fauna e flora associada. A diferença de crescimento nos eixos de Halodule wrightii em condições ambientais diferentes é compensada pelas variações nas características de distribuição da planta no ambiente, tais como a altura do dossel, a densidade e biomassa de eixos. O monitoramento a longo prazo pode permitir a tomada de ações que auxiliem no manejo e na recuperação desses importantes habitats costeiros.
Resumo:
Ao longo do século XX, poucos estudos de dendrocronologia foram desenvolvidos com espécies de ambientes tropicais, em função da crença de que as condições climáticas nessas regiões não apresentavam variações suficientemente marcantes e regulares para induzir um ritmo anual de crescimento radial. A realização de trabalhos sobre esse tema nas últimas décadas revelou que a formação de anéis de crescimento anuais nos trópicos pode estar associada a fatores diversos, como: existência de estação seca bem definida, ocorrência de inundações sazonais, respostas ao comportamento fenológico, respostas ao fotoperíodo e a ritmos endógenos. O presente estudo tem por objetivo compreender a dinâmica de crescimento radial de uma espécie da Mata Atlântica se desenvolvendo em ambiente natural. Para tanto, propôs-se: i) investigar a periodicidade da atividade cambial e dos fatores que a influenciam; ii) estimar a idade e taxa de crescimento diamétrico e iii) correlacionar os fatores ambientais com os anéis de crescimento, em indivíduos de Cedrela odorata L. Para o estudo da atividade cambial, foram obtidas amostras de caule a 1,30 m do solo, contendo periderme, faixa cambial e xilema e floema secundários, por métodos não destrutivos. A fenologia vegetativa e a frutificação dos indivíduos amostrados foram acompanhadas durante todo o período do experimento. O material coletado foi processado segundo técnicas usuais em Anatomia Vegetal e analisado sob microscopia óptica e de fluorescência. Os dados de fotoperíodo, precipitação, temperatura e fenologia vegetativa foram correlacionados à atividade cambial. Para o estudo dos anéis de crescimento, as coletas também foram realizadas a 1,30 m do solo, por meio de sonda de Pressler. As amostras obtidas foram polidas e analisadas sob microscópio estereoscópio, para demarcação e aferição do número de anéis de crescimento, e a largura dos anéis foi mensurada para a determinação das taxas de crescimento radial. A série histórica de temperatura e precipitação foi correlacionada à cronologia dos anéis de crescimento. Os resultados indicaram que a atividade cambial segue um ritmo anual de crescimento, correlacionado à sazonalidade do fotoperíodo, da precipitação e da fenologia vegetativa. A análise dos anéis de crescimento permitiu estimar a idade dos indivíduos e determinar a taxa média de incremento e as taxas de incremento diamétrico acumulado e incremento médio anual para a espécie no sítio de estudo. Os dados de incremento radial evidenciaram a ausência de relação entre a idade e o diâmetro das árvores. A análise da variação na largura dos anéis não apresentou correlações significativas com os fatores climáticos analisados.