138 resultados para Equações diferenciais não-lineares
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
As análises de erros são conduzidas antes de qualquer projeto a ser desenvolvido. A necessidade do conhecimento do comportamento do erro numérico em malhas estruturadas e não-estruturadas surge com o aumento do uso destas malhas nos métodos de discretização. Desta forma, o objetivo deste trabalho foi criar uma metodologia para analisar os erros de discretização gerados através do truncamento na Série de Taylor, aplicados às equações de Poisson e de Advecção-Difusão estacionárias uni e bidimensionais, utilizando-se o Método de Volumes Finitos em malhas do tipo Voronoi. A escolha dessas equações se dá devido a sua grande utilização em testes de novos modelos matemáticos e função de interpolação. Foram usados os esquemas Central Difference Scheme (CDS) e Upwind Difference Scheme(UDS) nos termos advectivos. Verificou-se a influência do tipo de condição de contorno e a posição do ponto gerador do volume na solução numérica. Os resultados analíticos foram confrontados com resultados experimentais para dois tipos de malhas de Voronoi, uma malha cartesiana e outra triangular comprovando a influência da forma do volume finito na solução numérica obtida. Foi percebido no estudo que a discretização usando o esquema CDS tem erros menores do que a discretização usando o esquema UDS conforme literatura. Também se percebe a diferença nos erros em volumes vizinhos nas malhas triangulares o que faz com que não se tenha uma uniformidade nos gráficos dos erros estudados. Percebeu-se que as malhas cartesianas com nó no centróide do volume tem menor erro de discretização do que malhas triangulares. Mas o uso deste tipo de malha depende da geometria do problema estudado
Resumo:
Nesta Tese desenvolvemos várias abordagens "Darbouxianas"para buscar integrais primeiras (elementares e Liouvillianas) de equações diferenciais ordinárias de segunda ordem (2EDOs) racionais. Os algoritmos (semi-algoritmos) que desenvolvemos seguem a linha do trabalho de Prelle e Singer. Basicamente, os métodos que buscam integrais primeiras elementares são uma extensão da técnica desenvolvida por Prelle e Singer para encontrar soluções elementares de equações diferenciais ordinárias de primeira ordem (1EDOs) racionais. O procedimento que lida com 2EDOs racionais que apresentam integrais primeiras Liouvillianas é baseado em uma extensão ao nosso método para encontrar soluções Liouvillianas de 1EDOs racionais. A ideia fundamental por tras do nosso trabalho consiste em que os fatores integrantes para 1-formas polinomiais geradas pela diferenciação de funções elementares e Liouvillianas são formados por certos polinômios denominados polinômios de Darboux. Vamos mostrar como combinar esses polinômios de Darboux para construir fatores integrantes e, de posse deles, determinar integrais primeiras. Vamos ainda discutir algumas implementações computacionais dos semi-algoritmos.
Resumo:
Este trabalho que envolve matemática aplicada e processamento paralelo: seu objetivo é avaliar uma estratégia de implementação em paralelo para algoritmos de diferenças finitas que aproximam a solução de equações diferenciais de evolução. A alternativa proposta é a substituição dos produtos matriz-vetor efetuados sequencialmente por multiplicações matriz-matriz aceleradas pelo método de Strassen em paralelo. O trabalho desenvolve testes visando verificar o ganho computacional relacionado a essa estratégia de paralelização, pois as aplicacações computacionais, que empregam a estratégia sequencial, possuem como característica o longo período de computação causado pelo grande volume de cálculo. Inclusive como alternativa, nós usamos o algoritmo em paralelo convencional para solução de algoritmos explícitos para solução de equações diferenciais parciais evolutivas no tempo. Portanto, de acordo com os resultados obtidos, nós observamos as características de cada estratégia em paralelo, tendo como principal objetivo diminuir o esforço computacional despendido.
Resumo:
O objetivo deste trabalho é tratar da simulação do fenômeno de propagação de ondas em uma haste heterogênea elástico, composta por dois materiais distintos (um linear e um não-linear), cada um deles com a sua própria velocidade de propagação da onda. Na interface entre estes materiais existe uma descontinuidade, um choque estacionário, devido ao salto das propriedades físicas. Empregando uma abordagem na configuração de referência, um sistema não-linear hiperbólico de equações diferenciais parciais, cujas incógnitas são a velocidade e a deformação, descrevendo a resposta dinâmica da haste heterogénea. A solução analítica completa do problema de Riemann associado são apresentados e discutidos.
Resumo:
A engenharia geotécnica é uma das grandes áreas da engenharia civil que estuda a interação entre as construções realizadas pelo homem ou de fenômenos naturais com o ambiente geológico, que na grande maioria das vezes trata-se de solos parcialmente saturados. Neste sentido, o desempenho de obras como estabilização, contenção de barragens, muros de contenção, fundações e estradas estão condicionados a uma correta predição do fluxo de água no interior dos solos. Porém, como a área das regiões a serem estudas com relação à predição do fluxo de água são comumente da ordem de quilômetros quadrados, as soluções dos modelos matemáticos exigem malhas computacionais de grandes proporções, ocasionando sérias limitações associadas aos requisitos de memória computacional e tempo de processamento. A fim de contornar estas limitações, métodos numéricos eficientes devem ser empregados na solução do problema em análise. Portanto, métodos iterativos para solução de sistemas não lineares e lineares esparsos de grande porte devem ser utilizados neste tipo de aplicação. Em suma, visto a relevância do tema, esta pesquisa aproximou uma solução para a equação diferencial parcial de Richards pelo método dos volumes finitos em duas dimensões, empregando o método de Picard e Newton com maior eficiência computacional. Para tanto, foram utilizadas técnicas iterativas de resolução de sistemas lineares baseados no espaço de Krylov com matrizes pré-condicionadoras com a biblioteca numérica Portable, Extensible Toolkit for Scientific Computation (PETSc). Os resultados indicam que quando se resolve a equação de Richards considerando-se o método de PICARD-KRYLOV, não importando o modelo de avaliação do solo, a melhor combinação para resolução dos sistemas lineares é o método dos gradientes biconjugados estabilizado mais o pré-condicionador SOR. Por outro lado, quando se utiliza as equações de van Genuchten deve ser optar pela combinação do método dos gradientes conjugados em conjunto com pré-condicionador SOR. Quando se adota o método de NEWTON-KRYLOV, o método gradientes biconjugados estabilizado é o mais eficiente na resolução do sistema linear do passo de Newton, com relação ao pré-condicionador deve-se dar preferência ao bloco Jacobi. Por fim, há evidências que apontam que o método PICARD-KRYLOV pode ser mais vantajoso que o método de NEWTON-KRYLOV, quando empregados na resolução da equação diferencial parcial de Richards.
Resumo:
O processo de recuperação secundária de petróleo é comumente realizado com a injeção de água ou gás no reservatório a fim de manter a pressão necessária para sua extração. Para que o investimento seja viável, os gastos com a extração precisam ser menores do que o retorno financeiro obtido com a produção de petróleo. Objetivando-se estudar possíveis cenários para o processo de exploração, costuma-se utilizar simulações dos processos de extração. As equações que modelam esse processo de recuperação são de caráter hiperbólico e não lineares, as quais podem ser interpretadas como Leis de Conservação, cujas soluções são complexas por suas naturezas descontínuas. Essas descontinuidades ou saltos são conhecidas como ondas de choque. Neste trabalho foi abordada uma análise matemática para os fenômenos oriundos de leis de conservação, para em seguida utilizá-la no entendimento do referido problema. Foram estudadas soluções fracas que, fisicamente, podem ser interpretadas como ondas de choque ou rarefação, então, para que fossem distinguidas as fisicamente admissíveis, foi considerado o princípio de entropia, nas suas diversas formas. As simulações foram realizadas nos âmbitos dos escoamentos bifásicos e trifásicos, em que os fluidos são imiscíveis e os efeitos gravitacionais e difusivos, devido à pressão capilar, foram desprezados. Inicialmente, foi feito um estudo comparativo de resoluções numéricas na captura de ondas de choque em escoamento bifásico água-óleo. Neste estudo destacam-se o método Composto LWLF-k, o esquema NonStandard e a introdução da nova função de renormalização para o esquema NonStandard, onde obteve resultados satisfatórios, principalmente em regiões onde a viscosidade do óleo é muito maior do que a viscosidade da água. No escoamento bidimensional, um novo método é proposto, partindo de uma generalização do esquema NonStandard unidimensional. Por fim, é feita uma adaptação dos métodos LWLF-4 e NonStandard para a simulação em escoamentos trifásicos em domínios unidimensional. O esquema NonStandard foi considerado mais eficiente nos problemas abordados, uma vez que sua versão bidimensional mostrou-se satisfatória na captura de ondas de choque em escoamentos bifásicos em meios porosos.
Resumo:
O desenvolvimento de software livre de Jacobiana para a resolução de problemas formulados por equações diferenciais parciais não-lineares é de interesse crescente para simular processos práticos de engenharia. Este trabalho utiliza o chamado algoritmo espectral livre de derivada para equações não-lineares na simulação de fluxos em meios porosos. O modelo aqui considerado é aquele empregado para descrever o deslocamento do fluido compressível miscível em meios porosos com fontes e sumidouros, onde a densidade da mistura de fluidos varia exponencialmente com a pressão. O algoritmo espectral utilizado é um método moderno para a solução de sistemas não-lineares de grande porte, o que não resolve sistemas lineares, nem usa qualquer informação explícita associados com a matriz Jacobiana, sendo uma abordagem livre de Jacobiana. Problemas bidimensionais são apresentados, juntamente com os resultados numéricos comparando o algoritmo espectral com um método de Newton inexato livre de Jacobiana. Os resultados deste trabalho mostram que este algoritmo espectral moderno é um método confiável e eficiente para a simulação de escoamentos compressíveis em meios porosos.
Resumo:
Nesta dissertação é apresentada uma modelagem analítica para o processo evolucionário formulado pela Teoria da Evolução por Endossimbiose representado através de uma sucessão de estágios envolvendo diferentes interações ecológicas e metábolicas entre populações de bactérias considerando tanto a dinâmica populacional como os processos produtivos dessas populações. Para tal abordagem é feito uso do sistema de equações diferenciais conhecido como sistema de Volterra-Hamilton bem como de determinados conceitos geométricos envolvendo a Teoria KCC e a Geometria Projetiva. Os principais cálculos foram realizados pelo pacote de programação algébrica FINSLER, aplicado sobre o MAPLE.
Resumo:
Os principais constituintes do ar, nitrogênio, oxigênio e argônio, estão cada vez mais presentes nas indústrias, onde são empregados nos processos químicos, para o transporte de alimentos e processamento de resíduos. As duas principais tecnologias para a separação dos componentes do ar são a adsorção e a destilação criogênica. Entretanto, para ambos os processos é necessário que os contaminantes do ar, como o gás carbônico, o vapor dágua e hidrocarbonetos, sejam removidos para evitar problemas operacionais e de segurança. Desta forma, o presente trabalho trata do estudo do processo de pré-purificação de ar utilizando adsorção. Neste sistema a corrente de ar flui alternadamente entre dois leitos adsorvedores para produzir ar purificado continuamente. Mais especificamente, o foco da dissertação corresponde à investigação do comportamento de unidades de pré-purificação tipo PSA (pressure swing adsorption), onde a etapa de dessorção é realizada pela redução da pressão. A análise da unidade de pré-purificação parte da modelagem dos leitos de adsorção através de um sistema de equações diferenciais parciais de balanço de massa na corrente gasosa e no leito. Neste modelo, a relação de equilíbrio relativa à adsorção é descrita pela isoterma de Dubinin-Astakhov estendida para misturas multicomponentes. Para a simulação do modelo, as derivadas espaciais são discretizadas via diferenças finitas e o sistema de equações diferenciais ordinárias resultante é resolvido por um solver apropriado (método das linhas). Para a simulação da unidade em operação, este modelo é acoplado a um algoritmo de convergência relativo às quatro etapas do ciclo de operação: adsorção, despressurização, purga e dessorção. O algoritmo em questão deve garantir que as condições finais da última etapa são equivalentes às condições iniciais da primeira etapa (estado estacionário cíclico). Desta forma, a simulação foi implementada na forma de um código computacional baseado no ambiente de programação Scilab (Scilab 5.3.0, 2010), que é um programa de distribuição gratuita. Os algoritmos de simulação de cada etapa individual e do ciclo completo são finalmente utilizados para analisar o comportamento da unidade de pré-purificação, verificando como o seu desempenho é afetado por alterações nas variáveis de projeto ou operacionais. Por exemplo, foi investigado o sistema de carregamento do leito que mostrou que a configuração ideal do leito é de 50% de alumina seguido de 50% de zeólita. Variáveis do processo foram também analisadas, a pressão de adsorção, a vazão de alimentação e o tempo do ciclo de adsorção, mostrando que o aumento da vazão de alimentação leva a perda da especificação que pode ser retomada reduzindo-se o tempo do ciclo de adsorção. Mostrou-se também que uma pressão de adsorção maior leva a uma maior remoção de contaminantes.
Resumo:
O presente trabalho aborda um problema inverso associado a difus~ao de calor em uma barra unidimensional. Esse fen^omeno e modelado por meio da equac~ao diferencial par- cial parabolica ut = uxx, conhecida como equac~ao de difus~ao do calor. O problema classico (problema direto) envolve essa equac~ao e um conjunto de restric~oes { as condic~oes inicial e de contorno {, o que permite garantir a exist^encia de uma soluc~ao unica. No problema inverso que estudamos, o valor da temperatura em um dos extremos da barra n~ao esta disponvel. Entretanto, conhecemos o valor da temperatura em um ponto x0 xo no interior da barra. Para aproximar o valor da temperatura no intervalo a direita de x0, propomos e testamos tr^es algoritmos de diferencas nitas: diferencas regressivas, leap-frog e diferencas regressivas maquiadas.
Resumo:
As técnicas inversas têm sido usadas na determinação de parâmetros importantes envolvidos na concepção e desempenho de muitos processos industriais. A aplicação de métodos estocásticos tem aumentado nos últimos anos, demonstrando seu potencial no estudo e análise dos diferentes sistemas em aplicações de engenharia. As rotinas estocásticas são capazes de otimizar a solução em uma ampla gama de variáveis do domínio, sendo possível a determinação dos parâmetros de interesse simultaneamente. Neste trabalho foram adotados os métodos estocásticos Luus-Jaakola (LJ) e Random Restricted Window (R2W) na obtenção dos ótimos dos parâmetros cinéticos de adsorção no sistema de cromatografia em batelada, tendo por objetivo verificar qual método forneceria o melhor ajuste entre os resultados obtidos nas simulações computacionais e os dados experimentais. Este modelo foi resolvido empregando o método de Runge- Kutta de 4 ordem para a solução de equações diferenciais ordinárias.
Resumo:
O Leito Móvel Simulado (LMS) é um processo de separação de compostos por adsorção muito eficiente, por trabalhar em um regime contínuo e também possuir fluxo contracorrente da fase sólida. Dentre as diversas aplicações, este processo tem se destacado na resolução de petroquímicos e principalmente na atualidade na separação de misturas racêmicas que são separações de um grau elevado de dificuldade. Neste trabalho foram propostas duas novas abordagens na modelagem do LMS, a abordagem Stepwise e a abordagem Front Velocity. Na modelagem Stepwise as colunas cromatográficas do LMS foram modeladas com uma abordagem discreta, onde cada uma delas teve seu domínio dividido em N células de mistura interligadas em série, e as concentrações dos compostos nas fases líquida e sólida foram simuladas usando duas cinéticas de transferência de massa distintas. Essa abordagem pressupõe que as interações decorrentes da transferência de massa entre as moléculas do composto nas suas fases líquida e sólida ocorram somente na superfície, de forma que com essa suposição pode-se admitir que o volume ocupado por cada molécula nas fases sólida e líquida é o mesmo, o que implica que o fator de residência pode ser considerado igual a constante de equilíbrio. Para descrever a transferência de massa que ocorre no processo cromatográfico a abordagem Front Velocity estabelece que a convecção é a fase dominante no transporte de soluto ao longo da coluna cromatográfica. O Front Velocity é um modelo discreto (etapas) em que a vazão determina o avanço da fase líquida ao longo da coluna. As etapas são: avanço da fase líquida e posterior transporte de massa entre as fases líquida e sólida, este último no mesmo intervalo de tempo. Desta forma, o fluxo volumétrico experimental é utilizado para a discretização dos volumes de controle que se deslocam ao longo da coluna porosa com a mesma velocidade da fase líquida. A transferência de massa foi representada por dois mecanismos cinéticos distintos, sem (tipo linear) e com capacidade máxima de adsorção (tipo Langmuir). Ambas as abordagens propostas foram estudadas e avaliadas mediante a comparação com dados experimentais de separação em LMS do anestésico cetamina e, posteriormente, com o fármaco Verapamil. Também foram comparados com as simulações do modelo de equilíbrio dispersivo para o caso da Cetamina, usado por Santos (2004), e para o caso do Verapamil (Perna 2013). Na etapa de caracterização da coluna cromatográfica as novas abordagens foram associadas à ferramenta inversa R2W de forma a determinar os parâmetros globais de transferência de massa apenas usando os tempos experimentais de residência de cada enantiômero na coluna de cromatografia líquida de alta eficiência (CLAE). Na segunda etapa os modelos cinéticos desenvolvidos nas abordagens foram aplicados nas colunas do LMS com os valores determinados na caracterização da coluna cromatográfica, para a simulação do processo de separação contínua. Os resultados das simulações mostram boa concordância entre as duas abordagens propostas e os experimentos de pulso para a caracterização da coluna na separação enantiomérica da cetamina ao longo do tempo. As simulações da separação em LMS, tanto do Verapamil quando da Cetamina apresentam uma discrepância com os dados experimentais nos primeiros ciclos, entretanto após esses ciclos iniciais a correlação entre os dados experimentais e as simulações. Para o caso da separação da cetamina (Santos, 2004), a qual a concentração da alimentação era relativamente baixa, os modelos foram capazes de predizer o processo de separação com as cinéticas Linear e Langmuir. No caso da separação do Verapamil (Perna, 2013), onde a concentração da alimentação é relativamente alta, somente a cinética de Langmuir representou o processo, devido a cinética Linear não representar a saturação das colunas cromatográficas. De acordo como o estudo conduzido ambas as abordagens propostas mostraram-se ferramentas com potencial na predição do comportamento cromatográfico de uma amostra em um experimento de pulso, assim como na simulação da separação de um composto no LMS, apesar das pequenas discrepâncias apresentadas nos primeiros ciclos de trabalho do LMS. Além disso, podem ser facilmente implementadas e aplicadas na análise do processo, pois requer um baixo número de parâmetros e são constituídas de equações diferenciais ordinárias.
Resumo:
A presente dissertação propõe uma abordagem alternativa na simulação matemática de um cenário preocupante em ecologia: o controle de pragas nocivas a uma dada lavoura de soja em uma específica região geográfica. O instrumental teórico empregado é a teoria dos jogos, de forma a acoplar ferramentas da matemática discreta à análise e solução de problemas de valor inicial em equações diferenciais, mais especificamente, as chamadas equações de dinâmica populacional de Lotka-Volterra com competição. Essas equações, que modelam o comportamento predador-presa, possuem, com os parâmetros inicialmente utilizados, um ponto de equilíbrio mais alto que o desejado no contexto agrícola sob exame, resultando na necessidade de utilização da teoria do controle ótimo. O esquema desenvolvido neste trabalho conduz a ferramentas suficientemente simples, de forma a tornar viável o seu uso em situações reais. Os dados utilizados para o tratamento do problema que conduziu a esta pesquisa interdisciplinar foram coletados de material bibliográfico da Empresa Brasileira de Pesquisa Agropecuária EMBRAPA.
Resumo:
Um grande desafio da atualidade é a preservação dos recursos hídricos, bem como o correto manejo dos mesmos, frente à expansão das cidades e às atividades humanas. A qualidade de um corpo hídrico é usualmente avaliada através da análise de parâmetros biológicos, físicos e químicos. O comportamento de tais parâmetros pode convenientemente ser simulado através de modelos matemáticos e computacionais, que surgem assim como uma ferramenta bastante útil, por sua capacidade de geração de cenários que possam embasar, por exemplo, tomadas de decisão. Nesta tese são discutidas técnicas de estimação da localização e intensidade de uma fonte de contaminante conservativo, hipoteticamente lançado na região predominantemente fluvial de um estuário. O lançamento aqui considerado se dá de forma pontual e contínua e a região enfocada compreendeu o estuário do Rio Macaé, localizado na costa norte do Rio de Janeiro. O trabalho compreende a solução de um problema direto, que consiste no transporte bidimensional (integrado na vertical) desse contaminante hipotético, bem como a aplicação de técnicas de problemas inversos. Para a solução do transporte do contaminante, aqui modelada pela versão 2D horizontal da equação de advecção-difusão, foram utilizados como métodos de discretização o Método de Elementos Finitos e o Método de Diferenças Finitas. Para o problema hidrodinâmico foram utilizados dados de uma solução já desenvolvida para estuário do Rio Macaé. Analisada a malha de acordo com o método de discretização, foram definidas a geometria do estuário e os parâmetros hidrodinâmicos e de transporte. Para a estimação dos parâmetros propostos foi utilizada a técnica de problemas inversos, com o uso dos métodos Luus-Jaakola, Algoritmo de Colisão de Partículas e Otimização por Colônia de Formigas para a estimação da localização e do método Seção Áurea para a estimação do parâmetro de intensidade da fonte. Para a definição de uma fonte, com o objetivo de propor um cenário experimental idealizado e de coleta de dados de amostragem, foi realizada a análise de sensibilidade quanto aos parâmetros a serem estimados. Como os dados de amostragem de concentração foram sintéticos, o problema inverso foi resolvido utilizando-os com e sem ruído, esse introduzido de forma artificial e aleatória. Sem o uso de ruído, os três métodos mostraram-se igualmente eficientes, com uma estimação precisa em 95% das execuções. Já com o uso de dados de amostragem com ruídos de 5%, o método Luus-Jaakola mostrou-se mais eficiente em esforço e custo computacional, embora todos tenham estimado precisamente a fonte em 80% das execuções. Considerando os resultados alcançados neste trabalho tem-se que é possível estimar uma fonte de constituintes, quanto à sua localização e intensidade, através da técnica de problemas inversos. Além disso, os métodos aplicados mostraram-se eficientes na estimação de tais parâmetros, com estimações precisas para a maioria de suas execuções. Sendo assim, o estudo do comportamento de contaminantes, e principalmente da identificação de fontes externas, torna-se uma importante ferramenta para a gestão dos recursos hídricos, possibilitando, inclusive, a identificação de possíveis responsáveis por passivos ambientais.
Resumo:
Em uma grande gama de problemas físicos, governados por equações diferenciais, muitas vezes é de interesse obter-se soluções para o regime transiente e, portanto, deve-se empregar técnicas de integração temporal. Uma primeira possibilidade seria a de aplicar-se métodos explícitos, devido à sua simplicidade e eficiência computacional. Entretanto, esses métodos frequentemente são somente condicionalmente estáveis e estão sujeitos a severas restrições na escolha do passo no tempo. Para problemas advectivos, governados por equações hiperbólicas, esta restrição é conhecida como a condição de Courant-Friedrichs-Lewy (CFL). Quando temse a necessidade de obter soluções numéricas para grandes períodos de tempo, ou quando o custo computacional a cada passo é elevado, esta condição torna-se um empecilho. A fim de contornar esta restrição, métodos implícitos, que são geralmente incondicionalmente estáveis, são utilizados. Neste trabalho, foram aplicadas algumas formulações implícitas para a integração temporal no método Smoothed Particle Hydrodynamics (SPH) de modo a possibilitar o uso de maiores incrementos de tempo e uma forte estabilidade no processo de marcha temporal. Devido ao alto custo computacional exigido pela busca das partículas a cada passo no tempo, esta implementação só será viável se forem aplicados algoritmos eficientes para o tipo de estrutura matricial considerada, tais como os métodos do subespaço de Krylov. Portanto, fez-se um estudo para a escolha apropriada dos métodos que mais se adequavam a este problema, sendo os escolhidos os métodos Bi-Conjugate Gradient (BiCG), o Bi-Conjugate Gradient Stabilized (BiCGSTAB) e o Quasi-Minimal Residual (QMR). Alguns problemas testes foram utilizados a fim de validar as soluções numéricas obtidas com a versão implícita do método SPH.