3 resultados para Automatic rule extraction

em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Somente no ano de 2011 foram adquiridos mais de 1.000TB de novos registros digitais de imagem advindos de Sensoriamento Remoto orbital. Tal gama de registros, que possui uma progressão geométrica crescente, é adicionada, anualmente, a incrível e extraordinária massa de dados de imagens orbitais já existentes da superfície da Terra (adquiridos desde a década de 70 do século passado). Esta quantidade maciça de registros, onde a grande maioria sequer foi processada, requer ferramentas computacionais que permitam o reconhecimento automático de padrões de imagem desejados, de modo a permitir a extração dos objetos geográficos e de alvos de interesse, de forma mais rápida e concisa. A proposta de tal reconhecimento ser realizado automaticamente por meio da integração de técnicas de Análise Espectral e de Inteligência Computacional com base no Conhecimento adquirido por especialista em imagem foi implementada na forma de um integrador com base nas técnicas de Redes Neurais Computacionais (ou Artificiais) (através do Mapa de Características Auto- Organizáveis de Kohonen SOFM) e de Lógica Difusa ou Fuzzy (através de Mamdani). Estas foram aplicadas às assinaturas espectrais de cada padrão de interesse, formadas pelos níveis de quantização ou níveis de cinza do respectivo padrão em cada uma das bandas espectrais, de forma que a classificação dos padrões irá depender, de forma indissociável, da correlação das assinaturas espectrais nas seis bandas do sensor, tal qual o trabalho dos especialistas em imagens. Foram utilizadas as bandas 1 a 5 e 7 do satélite LANDSAT-5 para a determinação de cinco classes/alvos de interesse da cobertura e ocupação terrestre em três recortes da área-teste, situados no Estado do Rio de Janeiro (Guaratiba, Mangaratiba e Magé) nesta integração, com confrontação dos resultados obtidos com aqueles derivados da interpretação da especialista em imagens, a qual foi corroborada através de verificação da verdade terrestre. Houve também a comparação dos resultados obtidos no integrador com dois sistemas computacionais comerciais (IDRISI Taiga e ENVI 4.8), no que tange a qualidade da classificação (índice Kappa) e tempo de resposta. O integrador, com classificações híbridas (supervisionadas e não supervisionadas) em sua implementação, provou ser eficaz no reconhecimento automático (não supervisionado) de padrões multiespectrais e no aprendizado destes padrões, pois para cada uma das entradas dos recortes da área-teste, menor foi o aprendizado necessário para sua classificação alcançar um acerto médio final de 87%, frente às classificações da especialista em imagem. A sua eficácia também foi comprovada frente aos sistemas computacionais testados, com índice Kappa médio de 0,86.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A extração de regras de associação (ARM - Association Rule Mining) de dados quantitativos tem sido pesquisa de grande interesse na área de mineração de dados. Com o crescente aumento das bases de dados, há um grande investimento na área de pesquisa na criação de algoritmos para melhorar o desempenho relacionado a quantidade de regras, sua relevância e a performance computacional. O algoritmo APRIORI, tradicionalmente usado na extração de regras de associação, foi criado originalmente para trabalhar com atributos categóricos. Geralmente, para usá-lo com atributos contínuos, ou quantitativos, é necessário transformar os atributos contínuos, discretizando-os e, portanto, criando categorias a partir dos intervalos discretos. Os métodos mais tradicionais de discretização produzem intervalos com fronteiras sharp, que podem subestimar ou superestimar elementos próximos dos limites das partições, e portanto levar a uma representação imprecisa de semântica. Uma maneira de tratar este problema é criar partições soft, com limites suavizados. Neste trabalho é utilizada uma partição fuzzy das variáveis contínuas, que baseia-se na teoria dos conjuntos fuzzy e transforma os atributos quantitativos em partições de termos linguísticos. Os algoritmos de mineração de regras de associação fuzzy (FARM - Fuzzy Association Rule Mining) trabalham com este princípio e, neste trabalho, o algoritmo FUZZYAPRIORI, que pertence a esta categoria, é utilizado. As regras extraídas são expressas em termos linguísticos, o que é mais natural e interpretável pelo raciocício humano. Os algoritmos APRIORI tradicional e FUZZYAPRIORI são comparado, através de classificadores associativos, baseados em regras extraídas por estes algoritmos. Estes classificadores foram aplicados em uma base de dados relativa a registros de conexões TCP/IP que destina-se à criação de um Sistema de Detecção de Intrusos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A descoberta de petróleo na camada de Pré-Sal possibilita a geração de ganhos em relação à dependência energética do país, mas também grandes desafios econômicos e tecnológicos. Os custos de extração são maiores devido a vários fatores como a exigência de equipamentos de exploração que suportem elevadas pressões, altas temperaturas e grandes concentrações de gases ácidos, tais quais, dióxido de carbono (CO2) e sulfeto de hidrogênio (H2S). Uma das principais preocupações com o CO2 é evitar liberá-lo para a atmosfera durante a produção. Com a modelagem termodinâmica de dados de equilíbrio de sistemas envolvendo CO2 supercrítico e hidrocarbonetos é possível projetar equipamentos utilizados em processos de separação. A principal motivação do trabalho é o levantamento de dados de equilíbrio de fases de sistemas compostos de CO2 e hidrocarbonetos, possibilitando assim prever o comportamento dessas misturas. Os objetivos específicos são a avaliação do procedimento experimental, a estimação e predição dos parâmetros de interação binários para assim prever o comportamento de fases dos sistemas ternários envolvendo CO2 e hidrocarbonetos. Duas metodologias foram utilizadas para obtenção dos dados de equilíbrio: método estático sintético (visual) e método dinâmico analítico (recirculação das fases). Os sistemas avaliados foram: CO2 + n-hexano, CO2 + tetralina, CO2 + n-hexadecano, CO2 + n-hexano + tetralina e CO2 + tetralina + n-hexadecano à alta pressão; tetralina + n-hexadecano à baixa pressão. Para o tratamento dos dados foi utilizada equação de estado cúbica de Peng-Robinson e a regra de mistura clássica