11 resultados para Artificial neural net

em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Com o avanço no desenvolvimento e utilização de veículos e robôs autoequilibrantes, faz-se necessário a investigação de controladores capazes de atender os diversos desafios relacionados à utilização desses sistemas. Neste trabalho foi estudado o controle de equilíbrio e posição de um robô auto-equilibrante de duas rodas. O interesse particular nesta aplicação vem da sua estrutura e da riqueza de sua dinâmica física. Por ser um problema complexo e não trivial há grande interesse em avaliar os controladores inteligentes. A primeira parte da dissertação aborda o desenvolvimento de um controle clássico do tipo PID, para em seguida ser comparado com a implementação de dois tipos de controladores inteligentes: On-line Neuro Fuzzy Control (ONFC) e Proportional-Integral-Derivative Neural-Network (PIDNN). Também é apresentada a implementação dos controladores em uma plataforma de hardware, utilizando o kit LEGO Mindstorm, e numa plataforma de simulação utilizando o MATLAB-Simulink. Em seguida, dois estudos de casos são desenvolvidos visando comparar o desempenho dos controladores. O primeiro caso avalia o controle de equilíbrio e posição do robô auto-equilibrante de duas rodas sobre um terreno plano tendo como interesse observar o desempenho intrínseco do sistema sob ausência de fatores externos. O segundo caso estuda o controle de equilíbrio e posição do robô em terrenos irregulares visando investigar a resposta do sistema sob influência de condições adversas em seu ambiente. Finalmente, o desempenho de cada um dos controladores desenvolvidos é discutido, verificando-se resultados competitivos no controle do robô auto-equilibrante de duas rodas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A presente dissertação trata da estipulação de limite de crédito para empresas clientes, de modo automático, com o uso de técnicas de Inteligência Computacional, especificamente redes neurais artificiais (RNA). Na análise de crédito as duas situações mais críticas são a liberação do crédito, de acordo com o perfil do cliente, e a manutenção deste limite ao longo do tempo de acordo com o histórico do cliente. O objeto desta dissertação visa a automação da estipulação do limite de crédito, implementando uma RNA que possa aprender com situações já ocorridas com outros clientes de perfil parecido e que seja capaz de tomar decisões baseando-se na política de crédito apreendida com um Analista de Crédito. O objetivo é tornar o sistema de crédito mais seguro para o credor, pois uma análise correta de crédito de um cliente reduz consideravelmente os índices de inadimplência e mantém as vendas num patamar ótimo. Para essa análise, utilizouse a linguagem de programação VB.Net para o sistema de cadastro e se utilizou do MatLab para treinamento das RNAs. A dissertação apresenta um estudo de caso, onde mostra a forma de aplicação deste software para a análise de crédito. Os resultados obtidos aplicando-se as técnicas de RNAs foram satisfatórias indicando um caminho eficiente para a determinação do limite de crédito.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O objetivo deste trabalho é conhecer e compreender melhor os imprevistos no fornecimento de energia elétrica, quando ocorrem as variações de tensão de curta duração (VTCD). O banco de dados necessário para os diagnósticos das faltas foi obtido através de simulações de um modelo de alimentador radial através do software PSCAD/EMTDC. Este trabalho utiliza um Phase-Locked Loop (PLL) com o intuito de detectar VTCDs e realizar a estimativa automática da frequência, do ângulo de fase e da amplitude das tensões e correntes da rede elétrica. Nesta pesquisa, desenvolveram-se duas redes neurais artificiais: uma para identificar e outra para localizar as VTCDs ocorridas no sistema de distribuição de energia elétrica. A técnica aqui proposta aplica-se a alimentadores trifásicos com cargas desequilibradas, que podem possuir ramais laterais trifásicos, bifásicos e monofásicos. No desenvolvimento da mesma, considera-se que há disponibilidade de medições de tensões e correntes no nó inicial do alimentador e também em alguns pontos esparsos ao longo do alimentador de distribuição. Os desempenhos das arquiteturas das redes neurais foram satisfatórios e demonstram a viabilidade das RNAs na obtenção das generalizações que habilitam o sistema para realizar a classificação de curtos-circuitos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Esta tese tem por objetivo propor uma metodologia para recuperação de perfis verticais de temperatura na atmosfera com nuvens a partir de medidas de radiância feitas por satélite, usando redes neurais artificiais. Perfis verticais de temperatura são importantes condições iniciais para modelos de previsão de tempo, e são usualmente obtidos a partir de medidas de radiâncias feitas por satélites na faixa do infravermelho. No entanto, quando estas medidas são feitas na presença de nuvens, não é possível, com as técnicas atuais, efetuar a recuperação deste perfil. É uma perda significativa de informação, pois, em média, 20% dos pixels das imagens acusam presença de nuvens. Nesta tese, este problema é resolvido como um problema inverso em dois passos: o primeiro passo consiste na determinação da radiância que atinge a base da nuvem a partir da radiância medida pelos satélites; o segundo passo consiste na determinação do perfil vertical de temperaturas a partir da informação de radiância fornecida pelo primeiro passo. São apresentadas reconstruções do perfil de temperatura para quatro casos testes. Os resultados obtidos mostram que a metodologia adotada produz resultados satisfatórios e tem grande potencial de uso, permitindo incorporar informações sobre uma região mais ampla do globo e, consequentemente, melhorar os modelos de previsão do tempo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabalho apresenta o desenvolvimento de sistemas inteligentes aplicados ao monitoramento de estruturas aeronáuticas abordando dois modelos distintos: o primeiro é a análise e classificação de imagens de ultrassom de estruturas aeronáuticas com objetivo de apoiar decisões em reparo de estruturas aeronáuticas. Foi definido como escopo do trabalho uma seção transversal da asa da aeronave modelo Boeing 707. Após a remoção de material superficial em áreas comprometidas por corrosão, é realizada a medição da espessura ao longo da área da peça. Com base nestas medições, a Engenharia realiza a análise estrutural, observando os limites determinados pelo manual de manutenção e determina a necessidade ou não de reparo. O segundo modelo compreende o método de impedância eletromecânica. É proposto o desenvolvimento de um sistema de monitoramento de baixo custo aplicado em uma barra de alumínio aeronáutico com 10 posições de fixação de porcas e parafusos. O objetivo do sistema é avaliar, a partir das curvas de impedância extraídas do transdutor PZT fixado na barra, sua capacidade de classificar a existência ou não de um dano na estrutura e, em caso de existência do dano, indicar sua localização e seu grau de severidade. Foram utilizados os seguintes classificadores neste trabalho: máquina de vetor de suporte, redes neurais artificiais e K vizinhos mais próximos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Esta pesquisa consiste na solução do problema inverso de transferência radiativa para um meio participante (emissor, absorvedor e/ou espalhador) homogêneo unidimensional em uma camada, usando-se a combinação de rede neural artificial (RNA) com técnicas de otimização. A saída da RNA, devidamente treinada, apresenta os valores das propriedades radiativas [ω, τ0, ρ1 e ρ2] que são otimizadas através das seguintes técnicas: Particle Collision Algorithm (PCA), Algoritmos Genéticos (AG), Greedy Randomized Adaptive Search Procedure (GRASP) e Busca Tabu (BT). Os dados usados no treinamento da RNA são sintéticos, gerados através do problema direto sem a introdução de ruído. Os resultados obtidos unicamente pela RNA, apresentam um erro médio percentual menor que 1,64%, seria satisfatório, todavia para o tratamento usando-se as quatro técnicas de otimização citadas anteriormente, os resultados tornaram-se ainda melhores com erros percentuais menores que 0,04%, especialmente quando a otimização é feita por AG.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neste trabalho é apresentado um estudo para a determinação do tamanho ótimo da malha de elementos, utilizando redes neurais artificiais, para o cálculo da intensidade útil. A ideia principal é treinar as redes de modo a possibilitar a aprendizagem e o reconhecimento do melhor tamanho para diversas áreas superficiais em fontes sonoras com geometria plana. A vantagem de se utilizar redes neurais artificiais deve-se ao fato de apresentarem um único tamanho para a obtenção da intensidade útil, consequentemente, uma redução significativa de tempo computacional quando comparado com o tempo de cálculo de uma malha bem refinada. Ensaios numéricos com placas planas - geometria separável que permite uma solução analítica - são utilizados para se realizar comparações. É apresentado um estudo comparativo entre o tempo computacional gasto para a obtenção da intensidade útil e o mesmo com a malha otimizada via redes neurais artificiais. Também é apresentada uma comparação do nível de potência sonora mediante solução numérica, a fim de validar os resultados apresentados pelas redes neurais.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neste trabalho é apresentada uma nova abordagem para obter as respostas impulsivas biauriculares (BIRs) para um sistema de aurilização utilizando um conjunto de redes neurais artificiais (RNAs). O método proposto é capaz de reconstruir as respostas impulsivas associadas à cabeça humana (HRIRs) por meio de modificação espectral e de interpolação espacial. A fim de cobrir todo o espaço auditivo de recepção, sem aumentar a complexidade da arquitetura da rede, uma estrutura com múltiplas RNAs (conjunto) foi adotada, onde cada rede opera uma região específica do espaço (gomo). Os três principais fatores que influenciam na precisão do modelo arquitetura da rede, ângulos de abertura da área de recepção e atrasos das HRIRs são investigados e uma configuração ideal é apresentada. O erro de modelagem no domínio da frequência é investigado considerando a natureza logarítmica da audição humana. Mais ainda, são propostos novos parâmetros para avaliação do erro, definidos em analogia com alguns dos bem conhecidos parâmetros de qualidade acústica de salas. Através da metodologia proposta obteve-se um ganho computacional, em redução do tempo de processamento, de aproximadamente 62% em relação ao método tradicional de processamento de sinais utilizado para aurilização. A aplicabilidade do novo método em sistemas de aurilização é reforçada mediante uma análise comparativa dos resultados, que incluem a geração das BIRs e o cálculo dos parâmetros acústicos biauriculares (IACF e IACC), os quais mostram erros de magnitudes reduzidas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O objetivo deste trabalho é contribuir com o desenvolvimento de uma técnica baseada em sistemas inteligentes que possibilite a localização exata ou aproximada do ponto de origem de uma Variação de Tensão de Curta Duração (VTCD) (gerada por uma falta) em um sistema de distribuição de energia elétrica. Este trabalho utiliza um Phase-Locked Loop (PLL) com o intuito de detectar as faltas. Uma vez que a falta é detectada, os sinais de tensão obtidos durante a falta são decompostos em componentes simétricas instantâneas por meio do método proposto. Em seguida, as energias das componentes simétricas são calculadas e utilizadas para estimar a localização da falta. Nesta pesquisa, são avaliadas duas estruturas baseadas em Redes Neurais Artificiais (RNAs). A primeira é projetada para classificar a localização da falta em um dos pontos possíveis e a segunda é projetada para estimar a distância da falta ao alimentador. A técnica aqui proposta aplica-se a alimentadores trifásicos com cargas equilibradas. No desenvolvimento da mesma, considera-se que há disponibilidade de medições de tensões no nó inicial do alimentador e também em pontos esparsos ao longo da rede de distribuição. O banco de dados empregado foi obtido através de simulações de um modelo de alimentador radial usando o programa PSCAD/EMTDC. Testes de sensibilidade empregando validação-cruzada são realizados em ambas as arquiteturas de redes neurais com o intuito de verificar a confiabilidade dos resultados obtidos. Adicionalmente foram realizados testes com faltas não inicialmente contidas no banco de dados a fim de se verificar a capacidade de generalização das redes. Os desempenhos de ambas as arquiteturas de redes neurais foram satisfatórios e demonstram a viabilidade das técnicas propostas para realizar a localização de faltas em redes de distribuição.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Com cada vez mais intenso desenvolvimento urbano e industrial, atualmente um desafio fundamental é eliminar ou reduzir o impacto causado pelas emissões de poluentes para a atmosfera. No ano de 2012, o Rio de Janeiro sediou a Rio +20, a Conferência das Nações Unidas sobre Desenvolvimento Sustentável, onde representantes de todo o mundo participaram. Na época, entre outros assuntos foram discutidos a economia verde e o desenvolvimento sustentável. O O3 troposférico apresenta-se como uma variável extremamente importante devido ao seu forte impacto ambiental, e conhecer o comportamento dos parâmetros que afetam a qualidade do ar de uma região, é útil para prever cenários. A química das ciências atmosféricas e meteorologia são altamente não lineares e, assim, as previsões de parâmetros de qualidade do ar são difíceis de serem determinadas. A qualidade do ar depende de emissões, de meteorologia e topografia. Os dados observados foram o dióxido de nitrogênio (NO2), monóxido de nitrogênio (NO), óxidos de nitrogênio (NOx), monóxido de carbono (CO), ozônio (O3), velocidade escalar vento (VEV), radiação solar global (RSG), temperatura (TEM), umidade relativa (UR) e foram coletados através da estação móvel de monitoramento da Secretaria do Meio Ambiente (SMAC) do Rio de Janeiro em dois locais na área metropolitana, na Pontifícia Universidade Católica (PUC-Rio) e na Universidade do Estado do Rio de Janeiro (UERJ) no ano de 2011 e 2012. Este estudo teve três objetivos: (1) analisar o comportamento das variáveis, utilizando o método de análise de componentes principais (PCA) de análise exploratória, (2) propor previsões de níveis de O3 a partir de poluentes primários e de fatores meteorológicos, comparando a eficácia dos métodos não lineares, como as redes neurais artificiais (ANN) e regressão por máquina de vetor de suporte (SVM-R), a partir de poluentes primários e de fatores meteorológicos e, finalmente, (3) realizar método de classificação de dados usando a classificação por máquina de vetor suporte (SVM-C). A técnica PCA mostrou que, para conjunto de dados da PUC as variáveis NO, NOx e VEV obtiveram um impacto maior sobre a concentração de O3 e o conjunto de dados da UERJ teve a TEM e a RSG como as variáveis mais importantes. Os resultados das técnicas de regressão não linear ANN e SVM obtidos foram muito próximos e aceitáveis para o conjunto de dados da UERJ apresentando coeficiente de determinação (R2) para a validação, 0,9122 e 0,9152 e Raiz Quadrada do Erro Médio Quadrático (RMECV) 7,66 e 7,85, respectivamente. Quanto aos conjuntos de dados PUC e PUC+UERJ, ambas as técnicas, obtiveram resultados menos satisfatórios. Para estes conjuntos de dados, a SVM mostrou resultados ligeiramente superiores, e PCA, SVM e ANN demonstraram sua robustez apresentando-se como ferramentas úteis para a compreensão, classificação e previsão de cenários da qualidade do ar

Relevância:

80.00% 80.00%

Publicador:

Resumo:

No presente trabalho foram desenvolvidos modelos de classificação aplicados à mineração de dados climáticos para a previsão de eventos extremos de precipitação com uma hora de antecedência. Mais especificamente, foram utilizados dados observacionais registrados pela estação meteorológica de superfície localizada no Instituto Politécnico da Universidade do Estado do Rio de Janeiro em Nova Friburgo RJ, durante o período de 2008 a 2012. A partir desses dados foi aplicado o processo de Descoberta de Conhecimento em Banco de Dados (KDD Knowledge Discovery in Databases), composto das etapas de preparação, mineração e pós processamento dos dados. Com base no uso de algoritmos de Redes Neurais Artificiais e Árvores de Decisão para a extração de padrões que indicassem um acúmulo de precipitação maior que 10 mm na hora posterior à medição das variáveis climáticas, pôde-se notar que a utilização da observação meteorológica de micro escala para previsões de curto prazo é suscetível a altas taxas de alarmes falsos (falsos positivos). Para contornar este problema, foram utilizados dados históricos de previsões realizadas pelo Modelo Eta com resolução de 15 km, disponibilizados pelo Centro de Previsão de Tempo e Estudos Climáticos do Instituto Nacional de Pesquisas Espaciais CPTEC/INPE. De posse desses dados, foi possível calcular os índices de instabilidade relacionados à formação de situação convectiva severa na região de Nova Friburgo e então armazená-los de maneira estruturada em um banco de dados, realizando a união entre os registros de micro e meso escala. Os resultados demonstraram que a união entre as bases de dados foi de extrema importância para a redução dos índices de falsos positivos, sendo essa uma importante contribuição aos estudos meteorológicos realizados em estações meteorológicas de superfície. Por fim, o modelo com maior precisão foi utilizado para o desenvolvimento de um sistema de alertas em tempo real, que verifica, para a região estudada, a possibilidade de chuva maior que 10 mm na próxima hora.