4 resultados para 080500 DISTRIBUTED COMPUTING
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
A Física das Radiações é um ramo da Física que está presente em diversas áreas de estudo e se relaciona ao conceito de espectrometria. Dentre as inúmeras técnicas espectrométricas existentes, destaca-se a espectrometria por fluorescência de raios X. Esta também possui uma gama de variações da qual pode-se dar ênfase a um determinado subconjunto de técnicas. A produção de fluorescência de raios X permite (em certos casos) a análise das propriedades físico-químicas de uma amostra específica, possibilitando a determinação de sua constituiçõa química e abrindo um leque de aplicações. Porém, o estudo experimental pode exigir uma grande carga de trabalho, tanto em termos do aparato físico quanto em relação conhecimento técnico. Assim, a técnica de simulação entra em cena como um caminho viável, entre a teoria e a experimentação. Através do método de Monte Carlo, que se utiliza da manipulação de números aleatórios, a simulação se mostra como uma espécie de alternativa ao trabalho experimental.Ela desenvolve este papel por meio de um processo de modelagem, dentro de um ambiente seguro e livre de riscos. E ainda pode contar com a computação de alto desempenho, de forma a otimizar todo o trabalho por meio da arquitetura distribuída. O objetivo central deste trabalho é a elaboração de um simulador computacional para análise e estudo de sistemas de fluorescência de raios X desenvolvido numa plataforma de computação distribuída de forma nativa com o intuito de gerar dados otimizados. Como resultados deste trabalho, mostra-se a viabilidade da construção do simulador através da linguagem CHARM++, uma linguagem baseada em C++ que incorpora rotinas para processamento distribuído, o valor da metodologia para a modelagem de sistemas e a aplicação desta na construção de um simulador para espectrometria por fluorescência de raios X. O simulador foi construído com a capacidade de reproduzir uma fonte de radiação eletromagnética, amostras complexas e um conjunto de detectores. A modelagem dos detectores incorpora a capacidade de geração de imagens baseadas nas contagens registradas. Para validação do simulador, comparou-se os resultados espectrométricos com os resultados gerados por outro simulador já validado: o MCNP.
Resumo:
A propriedade de auto-cura, em redes inteligente de distribuição de energia elétrica, consiste em encontrar uma proposta de reconfiguração do sistema de distribuição com o objetivo de recuperar parcial ou totalmente o fornecimento de energia aos clientes da rede, na ocorrência de uma falha na rede que comprometa o fornecimento. A busca por uma solução satisfatória é um problema combinacional cuja complexidade está ligada ao tamanho da rede. Um método de busca exaustiva se torna um processo muito demorado e muitas vezes computacionalmente inviável. Para superar essa dificuldade, pode-se basear nas técnicas de geração de árvores de extensão mínima do grafo, representando a rede de distribuição. Porém, a maioria dos estudos encontrados nesta área são implementações centralizadas, onde proposta de reconfiguração é obtida por um sistema de supervisão central. Nesta dissertação, propõe-se uma implementação distribuída, onde cada chave da rede colabora na elaboração da proposta de reconfiguração. A solução descentralizada busca uma redução no tempo de reconfiguração da rede em caso de falhas simples ou múltiplas, aumentando assim a inteligência da rede. Para isso, o algoritmo distribuído GHS é utilizado como base na elaboração de uma solução de auto-cura a ser embarcada nos elementos processadores que compõem as chaves de comutação das linhas da rede inteligente de distribuição. A solução proposta é implementada utilizando robôs como unidades de processamento que se comunicam via uma mesma rede, constituindo assim um ambiente de processamento distribuído. Os diferentes estudos de casos testados mostram que, para redes inteligentes de distribuição compostas por um único alimentador, a solução proposta obteve sucesso na reconfiguração da rede, indiferentemente do número de falhas simultâneas. Na implementação proposta, o tempo de reconfiguração da rede não depende do número de linhas nela incluídas. A implementação apresentou resultados de custo de comunicação e tempo dentro dos limites teóricos estabelecidos pelo algoritmo GHS.
Resumo:
A Inteligência de Enxame foi proposta a partir da observação do comportamento social de espécies de insetos, pássaros e peixes. A ideia central deste comportamento coletivo é executar uma tarefa complexa decompondo-a em tarefas simples, que são facilmente executadas pelos indivíduos do enxame. A realização coordenada destas tarefas simples, respeitando uma proporção pré-definida de execução, permite a realização da tarefa complexa. O problema de alocação de tarefas surge da necessidade de alocar as tarefas aos indivíduos de modo coordenado, permitindo o gerenciamento do enxame. A alocação de tarefas é um processo dinâmico pois precisa ser continuamente ajustado em resposta a alterações no ambiente, na configuração do enxame e/ou no desempenho do mesmo. A robótica de enxame surge deste contexto de cooperação coletiva, ampliada à robôs reais. Nesta abordagem, problemas complexos são resolvidos pela realização de tarefas complexas por enxames de robôs simples, com capacidade de processamento e comunicação limitada. Objetivando obter flexibilidade e confiabilidade, a alocação deve emergir como resultado de um processo distribuído. Com a descentralização do problema e o aumento do número de robôs no enxame, o processo de alocação adquire uma elevada complexidade. Desta forma, o problema de alocação de tarefas pode ser caracterizado como um processo de otimização que aloca as tarefas aos robôs, de modo que a proporção desejada seja atendida no momento em que o processo de otimização encontre a solução desejada. Nesta dissertação, são propostos dois algoritmos que seguem abordagens distintas ao problema de alocação dinâmica de tarefas, sendo uma local e a outra global. O algoritmo para alocação dinâmica de tarefas com abordagem local (ADTL) atualiza a alocação de tarefa de cada robô a partir de uma avaliação determinística do conhecimento atual que este possui sobre as tarefas alocadas aos demais robôs do enxame. O algoritmo para alocação dinâmica de tarefas com abordagem global (ADTG) atualiza a alocação de tarefas do enxame com base no algoritmo de otimização PSO (Particle swarm optimization). No ADTG, cada robô possui uma possível solução para a alocação do enxame que é continuamente atualizada através da troca de informação entre os robôs. As alocações são avaliadas quanto a sua aptidão em atender à proporção-objetivo. Quando é identificada a alocação de maior aptidão no enxame, todos os robôs do enxame são alocados para as tarefas definidas por esta alocação. Os algoritmos propostos foram implementados em enxames com diferentes arranjos de robôs reais demonstrando sua eficiência e eficácia, atestados pelos resultados obtidos.
Resumo:
Os Sistemas Multi-Robôs proporcionam vantagens sobre um robô individual, quando da realização de uma tarefa com maiores velocidade, precisão e tolerância a falhas. Os estudos dos comportamentos sociais na natureza têm permitido desenvolver algoritmos bio-inspirados úteis na área da robótica de enxame. Seguindo instruções simples e repetitivas, grupos de robôs, fisicamente limitados, conseguem solucionar problemas complexos. Quando existem duas ou mais tarefas a serem realizadas e o conjunto de robôs é heterogêneo, é possível agrupá-los de acordo com as funcionalidades neles disponíveis. No caso em que o conjunto de robôs é homogêneo, o agrupamento pode ser realizado considerando a posição relativa do robô em relação a uma tarefa ou acrescentando alguma característica distintiva. Nesta dissertação, é proposta uma técnica de clusterização espacial baseada simplesmente na comunicação local de robôs. Por meio de troca de mensagens entre os robôs vizinhos, esta técnica permite formar grupos de robôs espacialmente próximos sem precisar movimentar os robôs. Baseando-se nos métodos de clusterização de fichas, a técnica proposta emprega a noção de fichas virtuais, que são chamadas de cargas, sendo que uma carga pode ser estática ou dinâmica. Se uma carga é estática permite determinar a classe à qual um robô pertence. Dependendo da quantidade e do peso das cargas disponíveis no sistema, os robôs intercambiam informações até alcançar uma disposição homogênea de cargas. Quando as cargas se tornam estacionárias, é calculada uma densidade que permite guiar aquelas que estão ainda em movimento. Durante as experiências, foi observado visualmente que as cargas com maior peso acabam se agrupando primeiro enquanto aquelas com menor peso continuam se deslocando no enxame, até que estas cargas formem faixas de densidades diferenciadas para cada classe, alcançando assim o objetivo final que é a clusterização dos robôs.