67 resultados para Finanza matematica, Probabilità e statistica, Approssimazioni saddlepoint
Resumo:
A presente dissertação tem o objetivo de mostrar a arte Origami sob um contexto matemático, apresentando um pequeno resumo dos aspectos história e o desenvolvimento do Origami ao longo do tempo e dando maior destaque às suas aplicações na matemática, com o emprego dos axiomas de Huzita e a proposta de ampliação deste conjunto de axiomas com a inclusão da circunferência no papel Origami. Com o uso das técnicas de dobraduras, este trabalho mostra várias aplicações do Origami na matemática, tais como: a solução de alguns problemas clássicos, a construção de polígonos, a demonstração da soma dos ângulos internos de um triângulo, cálculo de algumas áreas, a solução de alguns problemas de máximos e mínimos, seguidos dos conceitos matemático envolvidos em cada um deles. E a inclusão da circunferência no plano Origami permitiu ainda, o estudo das construções das cônicas por dobraduras.
Resumo:
O objetivo central deste projeto é precisar matematicamente certos objetos combinatórios que servem como ponto de partida nas apresentações usuais da Análise Combinatória e são comumente apresentados de maneira informal e intuitiva. Estabelecido este referencial teórico preciso, pretendemos, a partir dele, reapresentar os conceitos de Análise Combinatória de modo mais rigoroso privilegiando sempre a apresentação mais natural possível. Mais precisamente, estaremos interessados em reapresentar os resultados referentes ao capítulo dois do livro do professor Augusto C. Morgado a partir de uma versão matematicamente mais precisa dos Princípios Aditivo e Multiplicativo. Além disso, pretendemos que os argumentos usados em nossas deduções usem predominantemente indução ou construção de bijeções, o que é um dos grandes objetos de estudo da combinatória moderna
Resumo:
A partir de 2011, ocorreram e ainda ocorrerão eventos de grande repercussão para a cidade do Rio de Janeiro, como a conferência Rio+20 das Nações Unidas e eventos esportivos de grande importância mundial (Copa do Mundo de Futebol, Olimpíadas e Paraolimpíadas). Estes acontecimentos possibilitam a atração de recursos financeiros para a cidade, assim como a geração de empregos, melhorias de infraestrutura e valorização imobiliária, tanto territorial quanto predial. Ao optar por um imóvel residencial em determinado bairro, não se avalia apenas o imóvel, mas também as facilidades urbanas disponíveis na localidade. Neste contexto, foi possível definir uma interpretação qualitativa linguística inerente aos bairros da cidade do Rio de Janeiro, integrando-se três técnicas de Inteligência Computacional para a avaliação de benefícios: Lógica Fuzzy, Máquina de Vetores Suporte e Algoritmos Genéticos. A base de dados foi construída com informações da web e institutos governamentais, evidenciando o custo de imóveis residenciais, benefícios e fragilidades dos bairros da cidade. Implementou-se inicialmente a Lógica Fuzzy como um modelo não supervisionado de agrupamento através das Regras Elipsoidais pelo Princípio de Extensão com o uso da Distância de Mahalanobis, configurando-se de forma inferencial os grupos de designação linguística (Bom, Regular e Ruim) de acordo com doze características urbanas. A partir desta discriminação, foi tangível o uso da Máquina de Vetores Suporte integrado aos Algoritmos Genéticos como um método supervisionado, com o fim de buscar/selecionar o menor subconjunto das variáveis presentes no agrupamento que melhor classifique os bairros (Princípio da Parcimônia). A análise das taxas de erro possibilitou a escolha do melhor modelo de classificação com redução do espaço de variáveis, resultando em um subconjunto que contém informações sobre: IDH, quantidade de linhas de ônibus, instituições de ensino, valor m médio, espaços ao ar livre, locais de entretenimento e crimes. A modelagem que combinou as três técnicas de Inteligência Computacional hierarquizou os bairros do Rio de Janeiro com taxas de erros aceitáveis, colaborando na tomada de decisão para a compra e venda de imóveis residenciais. Quando se trata de transporte público na cidade em questão, foi possível perceber que a malha rodoviária ainda é a prioritária
Resumo:
Este trabalho objetiva a construção de estruturas robustas e computacionalmente eficientes para a solução do problema de deposição de parafinas do ponto de vista do equilíbrio sólido-líquido. São avaliados diversos modelos termodinâmicos para a fase líquida: equação de estado de Peng-Robinson e os modelos de coeficiente de atividade de Solução Ideal, Wilson, UNIQUAC e UNIFAC. A fase sólida é caracterizada pelo modelo Multisólido. A previsão de formação de fase sólida é inicialmente prevista por um teste de estabilidade termodinâmica. Posteriormente, o sistema de equações não lineares que caracteriza o equilíbrio termodinâmico e as equações de balanço material é resolvido por três abordagens numéricas: método de Newton multivariável, método de Broyden e método Newton-Armijo. Diversos experimentos numéricos foram conduzidos de modo a avaliar os tempos de computação e a robustez frente a diversos cenários de estimativas iniciais dos métodos numéricos para os diferentes modelos e diferentes misturas. Os resultados indicam para a possibilidade de construção de arcabouços computacionais eficientes e robustos, que podem ser empregados acoplados a simuladores de escoamento em dutos, por exemplo.
Resumo:
Este é um trabalho de pesquisa sobre um conjunto de números (irracionais) que é pouco trabalhado no ensino básico de matemática. Foi uma procura muito interessante e enriquecedora, pois encontrei matemáticos e historiadores com visões bem diferentes. Muitos deles não aceitavam este novo conjunto. Para Leopold Kronecker, só existia o conjunto dos números inteiros. Já para Cantor e Dedekind, o aparecimento dos irracionais foi extremamente importante para o desenvolvimento da matemática, abrindo novos horizontes. Menciono aqui um pouco da vida e da obra de alguns matemáticos que se envolveram com os números irracionais. Tratamos ainda da descoberta dos incomensuráveis, ou seja, como iniciou-se o problema da incomensurabilidade, e do retângulo áureo e sua importância em outras áreas. O trabalho mostra também dois grupos de números que não são mencionados quando ensinamos equações algébricas, que são os números algébricos e os números transcendentes, assim como teoremas essenciais para a prova da transcendência dos irracionais especiais e . Por fim, proponho uma aula para uma turma do 3 ano do Ensino Médio com o objetivo de mostrar a irracionalidade de alguns números, usando os teoremas pertinentes
Resumo:
A teoria magneto-hidrodinâmicos permite a estruturação de modelos computacionais, designados modelos MHDs, que são uma extensão da dinâmica dos fluidos para lidar com fluidos eletricamente carregados, tais como os plasmas, em que se precisa considerar os efeitos de forças eletromagnéticas. Tais modelos são especialmente úteis quando o movimento exato de uma partícula não é de interesse, sendo que as equações descrevem as evoluções de quantidades macroscópicas. Várias formas de modelos MHD têm sido amplamente utilizadas na Física Espacial para descrever muitos tipos diferentes de fenômenos de plasma, tais como reconexão magnética e interações de ventos estelares com diferentes objetos celestiais. Neste trabalho, o objetivo é analisar o comportamento de diversos fluxos numéricos em uma discretização de volumes finitos de um modelo numérico de MHD usando um esquema de malha entrelaçada sem separação direcional considerando alguns casos testes. Para as simulações, utiliza-se o código Flash, desenvolvido pela Universidade de Chicago, por ser um código de amplo interesse nas simulações astrofísicas e de fenômenos no espaço próximo à Terra. A metodologia consiste na inclusão de um fluxo numérico, permitindo melhoria com respeito ao esquema HLL.
Resumo:
Os métodos de otimização que adotam condições de otimalidade de primeira e/ou segunda ordem são eficientes e normalmente esses métodos iterativos são desenvolvidos e analisados através da análise matemática do espaço euclidiano n-dimensional, o qual tem caráter local. Esses métodos levam a algoritmos iterativos que são usados para o cálculo de minimizadores globais de uma função não linear, principalmente não-convexas e multimodais, dependendo da posição dos pontos de partida. Método de Otimização Global Topográfico é um algoritmo de agrupamento, o qual é fundamentado nos conceitos elementares da teoria dos grafos, com a finalidade de gerar bons pontos de partida para os métodos de busca local, com base nos pontos distribuídos de modo uniforme no interior da região viável. Este trabalho tem como objetivo a aplicação do método de Otimização Global Topográfica junto com um método robusto e eficaz de direções viáveis por pontos-interiores a problemas de otimização que tem restrições de igualdade e/ou desigualdade lineares e/ou não lineares, que constituem conjuntos viáveis com interiores não vazios. Para cada um destes problemas, é representado também um hiper-retângulo compreendendo cada conjunto viável, onde os pontos amostrais são gerados.