67 resultados para Finanza matematica, Probabilità e statistica, Approssimazioni saddlepoint
Resumo:
Uma dedução dos critérios de multicriticalidade para o cálculo de pontos críticos de qualquer ordem representa a formalização de ideias utilizadas para calcular pontos críticos e tricríticos e ainda amplia tais ideias. De posse desta dedução pode-se compreender os critérios de tricriticalidade e, com isso, através de uma abordagem via problema de otimização global pode-se fazer o cálculo de pontos tricríticos utilizando um método numérico adequado de otimização global. Para evitar um excesso de custo computacional com rotinas numéricas utilizou-se aproximações na forma de diferenças finitas dos termos que compõem a função objetivo. Para simular a relação P v - T optou-se pela equação de estado cúbica de Peng-Robinson e pela regra clássica de fluidos de van der Vaals, para modelagem do problema também se calculou os tensores de ordem 2, 3, 4 e 5 da função do teste de estabilidade. Os resultados obtidos foram comparados com dados experimentais e por resultados obtidos com outros autores que utilizaram métodos numéricos, equação de estado ou abordagem diferente das utilizadas neste trabalho.
Resumo:
Um grande desafio da atualidade é a preservação dos recursos hídricos, bem como o correto manejo dos mesmos, frente à expansão das cidades e às atividades humanas. A qualidade de um corpo hídrico é usualmente avaliada através da análise de parâmetros biológicos, físicos e químicos. O comportamento de tais parâmetros pode convenientemente ser simulado através de modelos matemáticos e computacionais, que surgem assim como uma ferramenta bastante útil, por sua capacidade de geração de cenários que possam embasar, por exemplo, tomadas de decisão. Nesta tese são discutidas técnicas de estimação da localização e intensidade de uma fonte de contaminante conservativo, hipoteticamente lançado na região predominantemente fluvial de um estuário. O lançamento aqui considerado se dá de forma pontual e contínua e a região enfocada compreendeu o estuário do Rio Macaé, localizado na costa norte do Rio de Janeiro. O trabalho compreende a solução de um problema direto, que consiste no transporte bidimensional (integrado na vertical) desse contaminante hipotético, bem como a aplicação de técnicas de problemas inversos. Para a solução do transporte do contaminante, aqui modelada pela versão 2D horizontal da equação de advecção-difusão, foram utilizados como métodos de discretização o Método de Elementos Finitos e o Método de Diferenças Finitas. Para o problema hidrodinâmico foram utilizados dados de uma solução já desenvolvida para estuário do Rio Macaé. Analisada a malha de acordo com o método de discretização, foram definidas a geometria do estuário e os parâmetros hidrodinâmicos e de transporte. Para a estimação dos parâmetros propostos foi utilizada a técnica de problemas inversos, com o uso dos métodos Luus-Jaakola, Algoritmo de Colisão de Partículas e Otimização por Colônia de Formigas para a estimação da localização e do método Seção Áurea para a estimação do parâmetro de intensidade da fonte. Para a definição de uma fonte, com o objetivo de propor um cenário experimental idealizado e de coleta de dados de amostragem, foi realizada a análise de sensibilidade quanto aos parâmetros a serem estimados. Como os dados de amostragem de concentração foram sintéticos, o problema inverso foi resolvido utilizando-os com e sem ruído, esse introduzido de forma artificial e aleatória. Sem o uso de ruído, os três métodos mostraram-se igualmente eficientes, com uma estimação precisa em 95% das execuções. Já com o uso de dados de amostragem com ruídos de 5%, o método Luus-Jaakola mostrou-se mais eficiente em esforço e custo computacional, embora todos tenham estimado precisamente a fonte em 80% das execuções. Considerando os resultados alcançados neste trabalho tem-se que é possível estimar uma fonte de constituintes, quanto à sua localização e intensidade, através da técnica de problemas inversos. Além disso, os métodos aplicados mostraram-se eficientes na estimação de tais parâmetros, com estimações precisas para a maioria de suas execuções. Sendo assim, o estudo do comportamento de contaminantes, e principalmente da identificação de fontes externas, torna-se uma importante ferramenta para a gestão dos recursos hídricos, possibilitando, inclusive, a identificação de possíveis responsáveis por passivos ambientais.
Resumo:
A Amazônia exibe uma variedade de cenários que se complementam. Parte desse ecossistema sofre anualmente severas alterações em seu ciclo hidrológico, fazendo com que vastos trechos de floresta sejam inundados. Esse fenômeno, entretanto, é extremamente importante para a manutenção de ciclos naturais. Neste contexto, compreender a dinâmica das áreas alagáveis amazônicas é importante para antecipar o efeito de ações não sustentáveis. Sob esta motivação, este trabalho estuda um modelo de escoamento em áreas alagáveis amazônicas, baseado nas equações de Navier-Stokes, além de ferramentas que possam ser aplicadas ao modelo, favorecendo uma nova abordagem do problema. Para a discretização das equações é utilizado o Método dos Volumes Finitos, sendo o Método do Gradiente Conjugado a técnica escolhida para resolver os sistemas lineares associados. Como técnica de resolução numérica das equações, empregou-se o Método Marker and Cell, procedimento explícito para solução das equações de Navier-Stokes. Por fim, as técnicas são aplicadas a simulações preliminares utilizando a estrutura de dados Autonomous Leaves Graph, que tem recursos adaptativos para manipulação da malha que representa o domínio do problema
Resumo:
Esta dissertação aplica a regularização por entropia máxima no problema inverso de apreçamento de opções, sugerido pelo trabalho de Neri e Schneider em 2012. Eles observaram que a densidade de probabilidade que resolve este problema, no caso de dados provenientes de opções de compra e opções digitais, pode ser descrito como exponenciais nos diferentes intervalos da semireta positiva. Estes intervalos são limitados pelos preços de exercício. O critério de entropia máxima é uma ferramenta poderosa para regularizar este problema mal posto. A família de exponencial do conjunto solução, é calculado usando o algoritmo de Newton-Raphson, com limites específicos para as opções digitais. Estes limites são resultados do princípio de ausência de arbitragem. A metodologia foi usada em dados do índice de ação da Bolsa de Valores de São Paulo com seus preços de opções de compra em diferentes preços de exercício. A análise paramétrica da entropia em função do preços de opções digitais sínteticas (construídas a partir de limites respeitando a ausência de arbitragem) mostraram valores onde as digitais maximizaram a entropia. O exemplo de extração de dados do IBOVESPA de 24 de janeiro de 2013, mostrou um desvio do princípio de ausência de arbitragem para as opções de compra in the money. Este princípio é uma condição necessária para aplicar a regularização por entropia máxima a fim de obter a densidade e os preços. Nossos resultados mostraram que, uma vez preenchida a condição de convexidade na ausência de arbitragem, é possível ter uma forma de smile na curva de volatilidade, com preços calculados a partir da densidade exponencial do modelo. Isto coloca o modelo consistente com os dados do mercado. Do ponto de vista computacional, esta dissertação permitiu de implementar, um modelo de apreçamento que utiliza o princípio de entropia máxima. Três algoritmos clássicos foram usados: primeiramente a bisseção padrão, e depois uma combinação de metodo de bisseção com Newton-Raphson para achar a volatilidade implícita proveniente dos dados de mercado. Depois, o metodo de Newton-Raphson unidimensional para o cálculo dos coeficientes das densidades exponenciais: este é objetivo do estudo. Enfim, o algoritmo de Simpson foi usado para o calculo integral das distribuições cumulativas bem como os preços do modelo obtido através da esperança matemática.
Resumo:
Nos dias atuais, a maioria das operações feitas por empresas e organizações é armazenada em bancos de dados que podem ser explorados por pesquisadores com o objetivo de se obter informações úteis para auxílio da tomada de decisão. Devido ao grande volume envolvido, a extração e análise dos dados não é uma tarefa simples. O processo geral de conversão de dados brutos em informações úteis chama-se Descoberta de Conhecimento em Bancos de Dados (KDD - Knowledge Discovery in Databases). Uma das etapas deste processo é a Mineração de Dados (Data Mining), que consiste na aplicação de algoritmos e técnicas estatísticas para explorar informações contidas implicitamente em grandes bancos de dados. Muitas áreas utilizam o processo KDD para facilitar o reconhecimento de padrões ou modelos em suas bases de informações. Este trabalho apresenta uma aplicação prática do processo KDD utilizando a base de dados de alunos do 9 ano do ensino básico do Estado do Rio de Janeiro, disponibilizada no site do INEP, com o objetivo de descobrir padrões interessantes entre o perfil socioeconômico do aluno e seu desempenho obtido em Matemática na Prova Brasil 2011. Neste trabalho, utilizando-se da ferramenta chamada Weka (Waikato Environment for Knowledge Analysis), foi aplicada a tarefa de mineração de dados conhecida como associação, onde se extraiu regras por intermédio do algoritmo Apriori. Neste estudo foi possível descobrir, por exemplo, que alunos que já foram reprovados uma vez tendem a tirar uma nota inferior na prova de matemática, assim como alunos que nunca foram reprovados tiveram um melhor desempenho. Outros fatores, como a sua pretensão futura, a escolaridade dos pais, a preferência de matemática, o grupo étnico o qual o aluno pertence, se o aluno lê sites frequentemente, também influenciam positivamente ou negativamente no aprendizado do discente. Também foi feita uma análise de acordo com a infraestrutura da escola onde o aluno estuda e com isso, pôde-se afirmar que os padrões descobertos ocorrem independentemente se estes alunos estudam em escolas que possuem infraestrutura boa ou ruim. Os resultados obtidos podem ser utilizados para traçar perfis de estudantes que tem um melhor ou um pior desempenho em matemática e para a elaboração de políticas públicas na área de educação, voltadas ao ensino fundamental.
Resumo:
Em muitas representações de objetos ou sistemas físicos se faz necessário a utilização de técnicas de redução de dimensionalidade que possibilitam a análise dos dados em baixas dimensões, capturando os parâmetros essenciais associados ao problema. No contexto de aprendizagem de máquina esta redução se destina primordialmente à clusterização, reconhecimento e reconstrução de sinais. Esta tese faz uma análise meticulosa destes tópicos e suas conexões que se encontram em verdadeira ebulição na literatura, sendo o mapeamento de difusão o foco principal deste trabalho. Tal método é construído a partir de um grafo onde os vértices são os sinais (dados do problema) e o peso das arestas é estabelecido a partir do núcleo gaussiano da equação do calor. Além disso, um processo de Markov é estabelecido o que permite a visualização do problema em diferentes escalas conforme variação de um determinado parâmetro t: Um outro parâmetro de escala, Є, para o núcleo gaussiano é avaliado com cuidado relacionando-o com a dinâmica de Markov de forma a poder aprender a variedade que eventualmente seja o suporte do dados. Nesta tese é proposto o reconhecimento de imagens digitais envolvendo transformações de rotação e variação de iluminação. Também o problema da reconstrução de sinais é atacado com a proposta de pré-imagem utilizando-se da otimização de uma função custo com um parâmetro regularizador, γ, que leva em conta também o conjunto de dados iniciais.
Resumo:
O presente trabalho apresenta um estudo referente à aplicação da abordagem Bayesiana como técnica de solução do problema inverso de identificação de danos estruturais, onde a integridade da estrutura é continuamente descrita por um parâmetro estrutural denominado parâmetro de coesão. A estrutura escolhida para análise é uma viga simplesmente apoiada do tipo Euler-Bernoulli. A identificação de danos é baseada em alterações na resposta impulsiva da estrutura, provocadas pela presença dos mesmos. O problema direto é resolvido através do Método de Elementos Finitos (MEF), que, por sua vez, é parametrizado pelo parâmetro de coesão da estrutura. O problema de identificação de danos é formulado como um problema inverso, cuja solução, do ponto de vista Bayesiano, é uma distribuição de probabilidade a posteriori para cada parâmetro de coesão da estrutura, obtida utilizando-se a metodologia de amostragem de Monte Carlo com Cadeia de Markov. As incertezas inerentes aos dados medidos serão contempladas na função de verossimilhança. Três estratégias de solução são apresentadas. Na Estratégia 1, os parâmetros de coesão da estrutura são amostrados de funções densidade de probabilidade a posteriori que possuem o mesmo desvio padrão. Na Estratégia 2, após uma análise prévia do processo de identificação de danos, determina-se regiões da viga potencialmente danificadas e os parâmetros de coesão associados à essas regiões são amostrados a partir de funções de densidade de probabilidade a posteriori que possuem desvios diferenciados. Na Estratégia 3, após uma análise prévia do processo de identificação de danos, apenas os parâmetros associados às regiões identificadas como potencialmente danificadas são atualizados. Um conjunto de resultados numéricos é apresentado levando-se em consideração diferentes níveis de ruído para as três estratégias de solução apresentadas.
Resumo:
Diversas aplicações industriais relevantes envolvem os processos de adsorção, citando como exemplos a purificação de produtos, separação de substâncias, controle de poluição e umidade entre outros. O interesse crescente pelos processos de purificação de biomoléculas deve-se principalmente ao desenvolvimento da biotecnologia e à demanda das indústrias farmacêutica e química por produtos com alto grau de pureza. O leito móvel simulado (LMS) é um processo cromatográfico contínuo que tem sido aplicado para simular o movimento do leito de adsorvente, de forma contracorrente ao movimento do líquido, através da troca periódica das posições das correntes de entrada e saída, sendo operado de forma contínua, sem prejuízo da pureza das correntes de saída. Esta consiste no extrato, rico no componente mais fortemente adsorvido, e no rafinado, rico no componente mais fracamente adsorvido, sendo o processo particularmente adequado a separações binárias. O objetivo desta tese é estudar e avaliar diferentes abordagens utilizando métodos estocásticos de otimização para o problema inverso dos fenômenos envolvidos no processo de separação em LMS. Foram utilizados modelos discretos com diferentes abordagens de transferência de massa, com a vantagem da utilização de um grande número de pratos teóricos em uma coluna de comprimento moderado, neste processo a separação cresce à medida que os solutos fluem através do leito, isto é, ao maior número de vezes que as moléculas interagem entre a fase móvel e a fase estacionária alcançando assim o equilíbrio. A modelagem e a simulação verificadas nestas abordagens permitiram a avaliação e a identificação das principais características de uma unidade de separação do LMS. A aplicação em estudo refere-se à simulação de processos de separação do Baclofen e da Cetamina. Estes compostos foram escolhidos por estarem bem caracterizados na literatura, estando disponíveis em estudos de cinética e de equilíbrio de adsorção nos resultados experimentais. De posse de resultados experimentais avaliou-se o comportamento do problema direto e inverso de uma unidade de separação LMS visando comparar os resultados obtidos com os experimentais, sempre se baseando em critérios de eficiência de separação entre as fases móvel e estacionária. Os métodos estudados foram o GA (Genetic Algorithm) e o PCA (Particle Collision Algorithm) e também foi feita uma hibridização entre o GA e o PCA. Como resultado desta tese analisouse e comparou-se os métodos de otimização em diferentes aspectos relacionados com o mecanismo cinético de transferência de massa por adsorção e dessorção entre as fases sólidas do adsorvente.
Resumo:
Este trabalho de pesquisa tem por objetivo apresentar e investigar a viabilidade de um método numérico que contempla o paralelismo no tempo. Este método numérico está associado a problemas de condição inicial e de contorno para equações diferenciais parciais (evolutivas). Diferentemente do método proposto neste trabalho, a maioria dos métodos numéricos associados a equações diferencias parciais evolutivas e tradicionalmente encontrados, contemplam apenas o paralelismo no espaço. Daí, a motivação em realizar o presente trabalho de pesquisa, buscando não somente um método com paralelismo no tempo mas, sobretudo, um método viável do ponto de vista computacional. Para isso, a implementação do esquema numérico proposto está por conta de um algoritmo paralelo escrito na linguagem C e que utiliza a biblioteca MPI. A análise dos resultados obtidos com os testes de desempenho revelam um método numérico escalável e que exige pouco nível de comunicação entre processadores.
Resumo:
O presente trabalho aborda o problema de identificação de danos em uma estrutura a partir de sua resposta impulsiva. No modelo adotado, a integridade estrutural é continuamente descrita por um parâmetro de coesão. Sendo assim, o Modelo de Elementos Finitos (MEF) é utilizado para discretizar tanto o campo de deslocamentos, quanto o campo de coesão. O problema de identificação de danos é, então, definido como um problema de otimização, cujo objetivo é minimizar, em relação a um vetor de parâmetros nodais de coesão, um funcional definido a partir da diferença entre a resposta impulsiva experimental e a correspondente resposta prevista por um MEF da estrutura. A identificação de danos estruturais baseadas no domínio do tempo apresenta como vantagens a aplicabilidade em sistemas lineares e/ou com elevados níveis de amortecimento, além de apresentar uma elevada sensibilidade à presença de pequenos danos. Estudos numéricos foram realizados considerando-se um modelo de viga de Euler-Bernoulli simplesmente apoiada. Para a determinação do posicionamento ótimo do sensor de deslocamento e do número de pontos da resposta impulsiva, a serem utilizados no processo de identificação de danos, foi considerado o Projeto Ótimo de Experimentos. A posição do sensor e o número de pontos foram determinados segundo o critério D-ótimo. Outros critérios complementares foram também analisados. Uma análise da sensibilidade foi realizada com o intuito de identificar as regiões da estrutura onde a resposta é mais sensível à presença de um dano em um estágio inicial. Para a resolução do problema inverso de identificação de danos foram considerados os métodos de otimização Evolução Diferencial e Levenberg-Marquardt. Simulações numéricas, considerando-se dados corrompidos com ruído aditivo, foram realizadas com o intuito de avaliar a potencialidade da metodologia de identificação de danos, assim como a influência da posição do sensor e do número de dados considerados no processo de identificação. Com os resultados obtidos, percebe-se que o Projeto Ótimo de Experimentos é de fundamental importância para a identificação de danos.
Resumo:
O processo de recuperação secundária de petróleo é comumente realizado com a injeção de água ou gás no reservatório a fim de manter a pressão necessária para sua extração. Para que o investimento seja viável, os gastos com a extração precisam ser menores do que o retorno financeiro obtido com a produção de petróleo. Objetivando-se estudar possíveis cenários para o processo de exploração, costuma-se utilizar simulações dos processos de extração. As equações que modelam esse processo de recuperação são de caráter hiperbólico e não lineares, as quais podem ser interpretadas como Leis de Conservação, cujas soluções são complexas por suas naturezas descontínuas. Essas descontinuidades ou saltos são conhecidas como ondas de choque. Neste trabalho foi abordada uma análise matemática para os fenômenos oriundos de leis de conservação, para em seguida utilizá-la no entendimento do referido problema. Foram estudadas soluções fracas que, fisicamente, podem ser interpretadas como ondas de choque ou rarefação, então, para que fossem distinguidas as fisicamente admissíveis, foi considerado o princípio de entropia, nas suas diversas formas. As simulações foram realizadas nos âmbitos dos escoamentos bifásicos e trifásicos, em que os fluidos são imiscíveis e os efeitos gravitacionais e difusivos, devido à pressão capilar, foram desprezados. Inicialmente, foi feito um estudo comparativo de resoluções numéricas na captura de ondas de choque em escoamento bifásico água-óleo. Neste estudo destacam-se o método Composto LWLF-k, o esquema NonStandard e a introdução da nova função de renormalização para o esquema NonStandard, onde obteve resultados satisfatórios, principalmente em regiões onde a viscosidade do óleo é muito maior do que a viscosidade da água. No escoamento bidimensional, um novo método é proposto, partindo de uma generalização do esquema NonStandard unidimensional. Por fim, é feita uma adaptação dos métodos LWLF-4 e NonStandard para a simulação em escoamentos trifásicos em domínios unidimensional. O esquema NonStandard foi considerado mais eficiente nos problemas abordados, uma vez que sua versão bidimensional mostrou-se satisfatória na captura de ondas de choque em escoamentos bifásicos em meios porosos.
Resumo:
A identificação de danos estruturais é uma questão de fundamental importância na engenharia, visto que uma estrutura está sujeita a processos de deterioração e a ocorrência de danos durante a sua vida útil. A presença de danos compromete o desempenho e a integridade estrutural, podendo colocar vidas humanas em risco e resultam em perdas econômicas consideráveis. Técnicas de identificação de danos estruturais e monitoramento de estruturas fundamentadas no ajuste de um Modelo de Elementos Finitos (MEF) são constantes na literatura especializada. No entanto, a obtenção de um problema geralmente mal posto e o elevado custo computacional, inerente a essas técnicas, limitam ou até mesmo inviabilizam a sua aplicabilidade em estruturas que demandam um modelo de ordem elevada. Para contornar essas dificuldades, na formulação do problema de identificação de danos, pode-se utilizar o Modelo de Superfície de Reposta (MSR) em substituição a um MEF da estrutura. No presente trabalho, a identificação de danos estruturais considera o ajuste de um MSR da estrutura, objetivando-se a minimização de uma função de erro definida a partir das frequências naturais experimentais e das correspondentes frequências previstas pelo MSR. Estuda-se o problema de identificação de danos estruturais em uma viga de Euler-Bernoulli simplesmente apoiada, considerando as frequências naturais na formulação do problema inverso. O comportamento de uma viga de Euler-Bernoulli simplesmente apoiada na presença de danos é analisado, com intuito de se verificar as regiões onde a identificação dos mesmos pode apresentar maior dificuldade. No processo de identificação de danos, do presente trabalho, são avaliados os tipos de superfícies de resposta, após uma escolha apropriada do tipo de superfície de resposta a ser utilizado, determina-se a superfície de resposta considerando os dados experimentais selecionados a partir do projeto ótimo de experimentos. A utilização do método Evolução Diferencial (ED) no problema inverso de identificação de danos é considerado inerente aos resultados numéricos obtidos, a estratégia adotada mostrou-se capaz de localizar e quantificar os danos com elevada acurácia, mostrando a potencialidade do modelo de identificação de danos proposto.
Resumo:
Esta tese apresenta um estudo sobre modelagem computacional onde são aplicadas meta-heurísticas de otimização na solução de problemas inversos de transferência radiativa em meios unidimensionais com albedo dependente da variável óptica, e meios unidimensionais de duas camadas onde o problema inverso é tratado como um problema de otimização. O trabalho aplica uma meta-heurística baseada em comportamentos da natureza conhecida como algoritmo dos vagalumes. Inicialmente, foram feitos estudos comparativos de desempenho com dois outros algoritmos estocásticos clássicos. Os resultados encontrados indicaram que a escolha do algoritmo dos vagalumes era apropriada. Em seguida, foram propostas outras estratégias que foram inseridas no algoritmo dos vagalumes canônico. Foi proposto um caso onde se testou e investigou todas as potenciais estratégias. As que apresentaram os melhores resultados foram, então, testadas em mais dois casos distintos. Todos os três casos testados foram em um ambiente de uma camada, com albedo de espalhamento dependente da posição espacial. As estratégias que apresentaram os resultados mais competitivos foram testadas em um meio de duas camadas. Para este novo cenário foram propostos cinco novos casos de testes. Os resultados obtidos, pelas novas variantes do algoritmo dos vagalumes, foram criticamente analisados.
Resumo:
Nesta tese é realizada a modelagem do comportamento hidráulico dos principais rios que compõem a bacia hidrográfica do Rio Bengalas, localizada no município de Nova Friburgo-RJ, a qual abrange a área mais urbanizada da referida cidade. Para a realização das simulações foi utilizado o Sistema de Modelagem de Águas MOHID, ferramenta MOHID Land. Já para a calibração do modelo foram adotados alguns métodos de otimização, mais precisamente, os algoritmos de Luus- Jaakola (LJ) e Colisão de Partículas (PCA), acoplados ao referido sistema, com o intuito de determinar os principais parâmetros necessários à modelagem de corpos hídricos, bem como suas bacias hidrográficas. Foram utilizados dados topográficos do IBGE disponibilizados pela prefeitura após a elaboração do Plano de Águas Pluviais da região de interesse. Com o modelo devidamente calibrado por meio de dados experimentais, foi realizada a validação do mesmo através da simulação de inundações nesta região. Apesar de técnicas de otimização acopladas à plataforma MOHID terem sido utilizadas pela primeira vez em um rio de montanha, os resultados apresentaram-se importantes e qualitativamente satisfatórios do ponto de vista de auxílio à tomada de decisões, tendo como base a prevenção de danos causados pelas elevações da lâmina dágua que ocorrem frequentemente em Nova Friburgo, como por exemplo, a recente tragédia de janeiro de 2011 ocorrida na Região Serrana do Estado do Rio de Janeiro.
Resumo:
A presente dissertação tem como objetivo analisar o comportamento da solução numérica da equação de difusão anômala com distribuição de fluxo bimodal, no regime estacionário, através de dois métodos numéricos. Foram desenvolvidos modelos utilizando o Método de Elementos Finitos e o Método de Volumes Finitos para a solução numérica desta equação. No modelo do Método de Elementos Finitos utilizou-se polinômios cúbicos de Hermite como funções de interpolação. No modelo de Volumes Finitos foi utilizada uma discretização de ordem superior para a avaliação das derivadas da equação em estudo. Em ambos os métodos, os modelos desenvolvidos consideram a utilização de diferentes tipos de condições de contorno para a solução do problema. Foram analisadas as influências de parâmetros da equação, das condições de contorno e do refinamento da malha na solução numérica. Os resultados apresentam a análise de erros da solução numérica através da comparação desta com a solução analítica.