77 resultados para Equações diferenciais não-lineares - Solução analítica aproximada
Resumo:
Neste trabalho aplicamos métodos espectrais para a determinação da configuração inicial de três espaços-tempos contendo buracos negros. Para isto apresentamos primeiro a foliação do espaço-tempo em hipersuperfícies tridimensionais espaciais parametrizadas pela função temporal t. Este processo é chamado de decomposição 3+1 [2] [5]. O resultado deste processo são dois conjuntos de equações classificadas em equações de vínculo e evolução [4]. As equações de vínculo podem ser divididas em vínculos Hamiltoniano e dos momentos. Para a obtenção dos dados iniciais dos problemas estudados aqui, apenas a equação de vínculo Hamiltoniano será resolvida numericamente, pois as equações de vínculo dos momentos possuem solução analítica nestes casos. Uma pequena descrição dos métodos espectrais é apresentada, destacando-se os método de Galerkin, método pseudoespectral ou de colocação e método de Tau, que são empregados na resolução das equações de vínculo Hamiltoniano dos problemas estudados. Verificamos que os resultados obtidos neste trabalho superam aqueles produzidos por Kidder e Finn [15], devido a uma escolha diferente das funções de base, que aqui satisfazem uma das condições de contorno.
Resumo:
A presente dissertação propõe uma abordagem alternativa na simulação matemática de um cenário preocupante em ecologia: o controle de pragas nocivas a uma dada lavoura de soja em uma específica região geográfica. O instrumental teórico empregado é a teoria dos jogos, de forma a acoplar ferramentas da matemática discreta à análise e solução de problemas de valor inicial em equações diferenciais, mais especificamente, as chamadas equações de dinâmica populacional de Lotka-Volterra com competição. Essas equações, que modelam o comportamento predador-presa, possuem, com os parâmetros inicialmente utilizados, um ponto de equilíbrio mais alto que o desejado no contexto agrícola sob exame, resultando na necessidade de utilização da teoria do controle ótimo. O esquema desenvolvido neste trabalho conduz a ferramentas suficientemente simples, de forma a tornar viável o seu uso em situações reais. Os dados utilizados para o tratamento do problema que conduziu a esta pesquisa interdisciplinar foram coletados de material bibliográfico da Empresa Brasileira de Pesquisa Agropecuária EMBRAPA.
Resumo:
Um grande desafio da atualidade é a preservação dos recursos hídricos, bem como o correto manejo dos mesmos, frente à expansão das cidades e às atividades humanas. A qualidade de um corpo hídrico é usualmente avaliada através da análise de parâmetros biológicos, físicos e químicos. O comportamento de tais parâmetros pode convenientemente ser simulado através de modelos matemáticos e computacionais, que surgem assim como uma ferramenta bastante útil, por sua capacidade de geração de cenários que possam embasar, por exemplo, tomadas de decisão. Nesta tese são discutidas técnicas de estimação da localização e intensidade de uma fonte de contaminante conservativo, hipoteticamente lançado na região predominantemente fluvial de um estuário. O lançamento aqui considerado se dá de forma pontual e contínua e a região enfocada compreendeu o estuário do Rio Macaé, localizado na costa norte do Rio de Janeiro. O trabalho compreende a solução de um problema direto, que consiste no transporte bidimensional (integrado na vertical) desse contaminante hipotético, bem como a aplicação de técnicas de problemas inversos. Para a solução do transporte do contaminante, aqui modelada pela versão 2D horizontal da equação de advecção-difusão, foram utilizados como métodos de discretização o Método de Elementos Finitos e o Método de Diferenças Finitas. Para o problema hidrodinâmico foram utilizados dados de uma solução já desenvolvida para estuário do Rio Macaé. Analisada a malha de acordo com o método de discretização, foram definidas a geometria do estuário e os parâmetros hidrodinâmicos e de transporte. Para a estimação dos parâmetros propostos foi utilizada a técnica de problemas inversos, com o uso dos métodos Luus-Jaakola, Algoritmo de Colisão de Partículas e Otimização por Colônia de Formigas para a estimação da localização e do método Seção Áurea para a estimação do parâmetro de intensidade da fonte. Para a definição de uma fonte, com o objetivo de propor um cenário experimental idealizado e de coleta de dados de amostragem, foi realizada a análise de sensibilidade quanto aos parâmetros a serem estimados. Como os dados de amostragem de concentração foram sintéticos, o problema inverso foi resolvido utilizando-os com e sem ruído, esse introduzido de forma artificial e aleatória. Sem o uso de ruído, os três métodos mostraram-se igualmente eficientes, com uma estimação precisa em 95% das execuções. Já com o uso de dados de amostragem com ruídos de 5%, o método Luus-Jaakola mostrou-se mais eficiente em esforço e custo computacional, embora todos tenham estimado precisamente a fonte em 80% das execuções. Considerando os resultados alcançados neste trabalho tem-se que é possível estimar uma fonte de constituintes, quanto à sua localização e intensidade, através da técnica de problemas inversos. Além disso, os métodos aplicados mostraram-se eficientes na estimação de tais parâmetros, com estimações precisas para a maioria de suas execuções. Sendo assim, o estudo do comportamento de contaminantes, e principalmente da identificação de fontes externas, torna-se uma importante ferramenta para a gestão dos recursos hídricos, possibilitando, inclusive, a identificação de possíveis responsáveis por passivos ambientais.
Resumo:
O processo de recuperação secundária de petróleo é comumente realizado com a injeção de água ou gás no reservatório a fim de manter a pressão necessária para sua extração. Para que o investimento seja viável, os gastos com a extração precisam ser menores do que o retorno financeiro obtido com a produção de petróleo. Objetivando-se estudar possíveis cenários para o processo de exploração, costuma-se utilizar simulações dos processos de extração. As equações que modelam esse processo de recuperação são de caráter hiperbólico e não lineares, as quais podem ser interpretadas como Leis de Conservação, cujas soluções são complexas por suas naturezas descontínuas. Essas descontinuidades ou saltos são conhecidas como ondas de choque. Neste trabalho foi abordada uma análise matemática para os fenômenos oriundos de leis de conservação, para em seguida utilizá-la no entendimento do referido problema. Foram estudadas soluções fracas que, fisicamente, podem ser interpretadas como ondas de choque ou rarefação, então, para que fossem distinguidas as fisicamente admissíveis, foi considerado o princípio de entropia, nas suas diversas formas. As simulações foram realizadas nos âmbitos dos escoamentos bifásicos e trifásicos, em que os fluidos são imiscíveis e os efeitos gravitacionais e difusivos, devido à pressão capilar, foram desprezados. Inicialmente, foi feito um estudo comparativo de resoluções numéricas na captura de ondas de choque em escoamento bifásico água-óleo. Neste estudo destacam-se o método Composto LWLF-k, o esquema NonStandard e a introdução da nova função de renormalização para o esquema NonStandard, onde obteve resultados satisfatórios, principalmente em regiões onde a viscosidade do óleo é muito maior do que a viscosidade da água. No escoamento bidimensional, um novo método é proposto, partindo de uma generalização do esquema NonStandard unidimensional. Por fim, é feita uma adaptação dos métodos LWLF-4 e NonStandard para a simulação em escoamentos trifásicos em domínios unidimensional. O esquema NonStandard foi considerado mais eficiente nos problemas abordados, uma vez que sua versão bidimensional mostrou-se satisfatória na captura de ondas de choque em escoamentos bifásicos em meios porosos.
Resumo:
Neste trabalho, será considerado um problema de controle ótimo quadrático para a equação do calor em domínios retangulares com condição de fronteira do tipo Dirichlet é nos quais, a função de controle (dependente apenas no tempo) constitui um termo de fonte. Uma caracterização da solução ótima é obtida na forma de uma equação linear em um espaço de funções reais definidas no intervalo de tempo considerado. Em seguida, utiliza-se uma sequência de projeções em subespaços de dimensão finita para obter aproximações para o controle ótimo, o cada uma das quais pode ser gerada por um sistema linear de dimensão finita. A sequência de soluções aproximadas assim obtidas converge para a solução ótima do problema original. Finalmente, são apresentados resultados numéricos para domínios espaciais de dimensão 1.
Resumo:
Os principais constituintes do ar, nitrogênio, oxigênio e argônio, estão cada vez mais presentes nas indústrias, onde são empregados nos processos químicos, para o transporte de alimentos e processamento de resíduos. As duas principais tecnologias para a separação dos componentes do ar são a adsorção e a destilação criogênica. Entretanto, para ambos os processos é necessário que os contaminantes do ar, como o gás carbônico, o vapor dágua e hidrocarbonetos, sejam removidos para evitar problemas operacionais e de segurança. Desta forma, o presente trabalho trata do estudo do processo de pré-purificação de ar utilizando adsorção. Neste sistema a corrente de ar flui alternadamente entre dois leitos adsorvedores para produzir ar purificado continuamente. Mais especificamente, o foco da dissertação corresponde à investigação do comportamento de unidades de pré-purificação tipo PSA (pressure swing adsorption), onde a etapa de dessorção é realizada pela redução da pressão. A análise da unidade de pré-purificação parte da modelagem dos leitos de adsorção através de um sistema de equações diferenciais parciais de balanço de massa na corrente gasosa e no leito. Neste modelo, a relação de equilíbrio relativa à adsorção é descrita pela isoterma de Dubinin-Astakhov estendida para misturas multicomponentes. Para a simulação do modelo, as derivadas espaciais são discretizadas via diferenças finitas e o sistema de equações diferenciais ordinárias resultante é resolvido por um solver apropriado (método das linhas). Para a simulação da unidade em operação, este modelo é acoplado a um algoritmo de convergência relativo às quatro etapas do ciclo de operação: adsorção, despressurização, purga e dessorção. O algoritmo em questão deve garantir que as condições finais da última etapa são equivalentes às condições iniciais da primeira etapa (estado estacionário cíclico). Desta forma, a simulação foi implementada na forma de um código computacional baseado no ambiente de programação Scilab (Scilab 5.3.0, 2010), que é um programa de distribuição gratuita. Os algoritmos de simulação de cada etapa individual e do ciclo completo são finalmente utilizados para analisar o comportamento da unidade de pré-purificação, verificando como o seu desempenho é afetado por alterações nas variáveis de projeto ou operacionais. Por exemplo, foi investigado o sistema de carregamento do leito que mostrou que a configuração ideal do leito é de 50% de alumina seguido de 50% de zeólita. Variáveis do processo foram também analisadas, a pressão de adsorção, a vazão de alimentação e o tempo do ciclo de adsorção, mostrando que o aumento da vazão de alimentação leva a perda da especificação que pode ser retomada reduzindo-se o tempo do ciclo de adsorção. Mostrou-se também que uma pressão de adsorção maior leva a uma maior remoção de contaminantes.
Resumo:
O presente trabalho aborda um problema inverso associado a difus~ao de calor em uma barra unidimensional. Esse fen^omeno e modelado por meio da equac~ao diferencial par- cial parabolica ut = uxx, conhecida como equac~ao de difus~ao do calor. O problema classico (problema direto) envolve essa equac~ao e um conjunto de restric~oes { as condic~oes inicial e de contorno {, o que permite garantir a exist^encia de uma soluc~ao unica. No problema inverso que estudamos, o valor da temperatura em um dos extremos da barra n~ao esta disponvel. Entretanto, conhecemos o valor da temperatura em um ponto x0 xo no interior da barra. Para aproximar o valor da temperatura no intervalo a direita de x0, propomos e testamos tr^es algoritmos de diferencas nitas: diferencas regressivas, leap-frog e diferencas regressivas maquiadas.
Resumo:
Uma análise utilizando a série de Taylor é apresentada para se estimar a priori os erros envolvidos na solução numérica da equação de advecção unidimensional com termo fonte, através do Método dos Volumes Finitos em uma malha do tipo uniforme e uma malha não uniforme. Também faz-se um estudo a posteriori para verificar a magnitude do erro de discretização e corroborar os resultados obtidos através da análise a priori. Por meio da técnica de solução manufaturada tem-se uma solução analítica para o problema, a qual facilita a análise dos resultados numéricos encontrados, e estuda-se ainda a influência das funções de interpolação UDS e CDS e do parâmetro u na solução numérica.
Resumo:
O Leito Móvel Simulado (LMS) é um processo de separação de compostos por adsorção muito eficiente, por trabalhar em um regime contínuo e também possuir fluxo contracorrente da fase sólida. Dentre as diversas aplicações, este processo tem se destacado na resolução de petroquímicos e principalmente na atualidade na separação de misturas racêmicas que são separações de um grau elevado de dificuldade. Neste trabalho foram propostas duas novas abordagens na modelagem do LMS, a abordagem Stepwise e a abordagem Front Velocity. Na modelagem Stepwise as colunas cromatográficas do LMS foram modeladas com uma abordagem discreta, onde cada uma delas teve seu domínio dividido em N células de mistura interligadas em série, e as concentrações dos compostos nas fases líquida e sólida foram simuladas usando duas cinéticas de transferência de massa distintas. Essa abordagem pressupõe que as interações decorrentes da transferência de massa entre as moléculas do composto nas suas fases líquida e sólida ocorram somente na superfície, de forma que com essa suposição pode-se admitir que o volume ocupado por cada molécula nas fases sólida e líquida é o mesmo, o que implica que o fator de residência pode ser considerado igual a constante de equilíbrio. Para descrever a transferência de massa que ocorre no processo cromatográfico a abordagem Front Velocity estabelece que a convecção é a fase dominante no transporte de soluto ao longo da coluna cromatográfica. O Front Velocity é um modelo discreto (etapas) em que a vazão determina o avanço da fase líquida ao longo da coluna. As etapas são: avanço da fase líquida e posterior transporte de massa entre as fases líquida e sólida, este último no mesmo intervalo de tempo. Desta forma, o fluxo volumétrico experimental é utilizado para a discretização dos volumes de controle que se deslocam ao longo da coluna porosa com a mesma velocidade da fase líquida. A transferência de massa foi representada por dois mecanismos cinéticos distintos, sem (tipo linear) e com capacidade máxima de adsorção (tipo Langmuir). Ambas as abordagens propostas foram estudadas e avaliadas mediante a comparação com dados experimentais de separação em LMS do anestésico cetamina e, posteriormente, com o fármaco Verapamil. Também foram comparados com as simulações do modelo de equilíbrio dispersivo para o caso da Cetamina, usado por Santos (2004), e para o caso do Verapamil (Perna 2013). Na etapa de caracterização da coluna cromatográfica as novas abordagens foram associadas à ferramenta inversa R2W de forma a determinar os parâmetros globais de transferência de massa apenas usando os tempos experimentais de residência de cada enantiômero na coluna de cromatografia líquida de alta eficiência (CLAE). Na segunda etapa os modelos cinéticos desenvolvidos nas abordagens foram aplicados nas colunas do LMS com os valores determinados na caracterização da coluna cromatográfica, para a simulação do processo de separação contínua. Os resultados das simulações mostram boa concordância entre as duas abordagens propostas e os experimentos de pulso para a caracterização da coluna na separação enantiomérica da cetamina ao longo do tempo. As simulações da separação em LMS, tanto do Verapamil quando da Cetamina apresentam uma discrepância com os dados experimentais nos primeiros ciclos, entretanto após esses ciclos iniciais a correlação entre os dados experimentais e as simulações. Para o caso da separação da cetamina (Santos, 2004), a qual a concentração da alimentação era relativamente baixa, os modelos foram capazes de predizer o processo de separação com as cinéticas Linear e Langmuir. No caso da separação do Verapamil (Perna, 2013), onde a concentração da alimentação é relativamente alta, somente a cinética de Langmuir representou o processo, devido a cinética Linear não representar a saturação das colunas cromatográficas. De acordo como o estudo conduzido ambas as abordagens propostas mostraram-se ferramentas com potencial na predição do comportamento cromatográfico de uma amostra em um experimento de pulso, assim como na simulação da separação de um composto no LMS, apesar das pequenas discrepâncias apresentadas nos primeiros ciclos de trabalho do LMS. Além disso, podem ser facilmente implementadas e aplicadas na análise do processo, pois requer um baixo número de parâmetros e são constituídas de equações diferenciais ordinárias.
Resumo:
Em uma grande gama de problemas físicos, governados por equações diferenciais, muitas vezes é de interesse obter-se soluções para o regime transiente e, portanto, deve-se empregar técnicas de integração temporal. Uma primeira possibilidade seria a de aplicar-se métodos explícitos, devido à sua simplicidade e eficiência computacional. Entretanto, esses métodos frequentemente são somente condicionalmente estáveis e estão sujeitos a severas restrições na escolha do passo no tempo. Para problemas advectivos, governados por equações hiperbólicas, esta restrição é conhecida como a condição de Courant-Friedrichs-Lewy (CFL). Quando temse a necessidade de obter soluções numéricas para grandes períodos de tempo, ou quando o custo computacional a cada passo é elevado, esta condição torna-se um empecilho. A fim de contornar esta restrição, métodos implícitos, que são geralmente incondicionalmente estáveis, são utilizados. Neste trabalho, foram aplicadas algumas formulações implícitas para a integração temporal no método Smoothed Particle Hydrodynamics (SPH) de modo a possibilitar o uso de maiores incrementos de tempo e uma forte estabilidade no processo de marcha temporal. Devido ao alto custo computacional exigido pela busca das partículas a cada passo no tempo, esta implementação só será viável se forem aplicados algoritmos eficientes para o tipo de estrutura matricial considerada, tais como os métodos do subespaço de Krylov. Portanto, fez-se um estudo para a escolha apropriada dos métodos que mais se adequavam a este problema, sendo os escolhidos os métodos Bi-Conjugate Gradient (BiCG), o Bi-Conjugate Gradient Stabilized (BiCGSTAB) e o Quasi-Minimal Residual (QMR). Alguns problemas testes foram utilizados a fim de validar as soluções numéricas obtidas com a versão implícita do método SPH.
Resumo:
Neste trabalho são utilizados a técnica baseada na propagação de ondas acústicas e o método de otimização estocástica Luus-Jaakola (LJ) para solucionar o problema inverso relacionado à identificação de danos em barras. São apresentados o algoritmo algébrico sequencial (AAS) e o algoritmo algébrico sequencial aperfeiçoado (AASA) que modelam o problema direto de propagação de ondas acústicas em uma barra. O AASA consiste nas modificações introduzidas no AAS. O uso do AASA resolve com vantagens o problema de identificação de danos com variações abruptas de impedância. Neste trabalho são obtidos, usando-se o AAS-LJ e o AASA-LJ, os resultados de identificação de cinco cenários de danos. Três deles com perfil suave de impedância acústica generalizada e os outros dois abruptos. Além disso, com o objetivo de simular sinais reais de um experimento, foram introduzidos variados níveis de ruído. Os resultados alcançados mostram que o uso do AASA-LJ na resolução de problemas de identificação de danos em barras é bastante promissor, superando o AAS-LJ para perfis abruptos de impedância.
Resumo:
Um método numérico espectronodal (END) livre de erros de truncamento espacial é desenvolvido para problemas unidimensionais de difusão de nêutrons monoenergéticos em duas versões. Na versão de problemas de autovalor, o método gera soluções numéricas para o perfil do fluxo escalar e para o fator de multiplicação efetivo (k), que coincidem com a solução analítica dominante, afora os erros da aritmética finita computacional. Na versão de fonte fxa, o método também gera soluções numéricas analíticas para o problema de fonte fixa correspondente, onde a fonte de fissão, com dependência espacial, é obtida analiticamente, a partir da reconstrução espacial do fluxo escalar gerado pelo método END para problemas de autovalor. Alguns experimentos numéricos são apresentados para dois problemas modelos a fim de ilustrar a precisão do método.
Resumo:
Este trabalho de pesquisa tem por objetivo apresentar e investigar a viabilidade de um método numérico que contempla o paralelismo no tempo. Este método numérico está associado a problemas de condição inicial e de contorno para equações diferenciais parciais (evolutivas). Diferentemente do método proposto neste trabalho, a maioria dos métodos numéricos associados a equações diferencias parciais evolutivas e tradicionalmente encontrados, contemplam apenas o paralelismo no espaço. Daí, a motivação em realizar o presente trabalho de pesquisa, buscando não somente um método com paralelismo no tempo mas, sobretudo, um método viável do ponto de vista computacional. Para isso, a implementação do esquema numérico proposto está por conta de um algoritmo paralelo escrito na linguagem C e que utiliza a biblioteca MPI. A análise dos resultados obtidos com os testes de desempenho revelam um método numérico escalável e que exige pouco nível de comunicação entre processadores.
Resumo:
Nesta tese é realizada a modelagem do comportamento hidráulico dos principais rios que compõem a bacia hidrográfica do Rio Bengalas, localizada no município de Nova Friburgo-RJ, a qual abrange a área mais urbanizada da referida cidade. Para a realização das simulações foi utilizado o Sistema de Modelagem de Águas MOHID, ferramenta MOHID Land. Já para a calibração do modelo foram adotados alguns métodos de otimização, mais precisamente, os algoritmos de Luus- Jaakola (LJ) e Colisão de Partículas (PCA), acoplados ao referido sistema, com o intuito de determinar os principais parâmetros necessários à modelagem de corpos hídricos, bem como suas bacias hidrográficas. Foram utilizados dados topográficos do IBGE disponibilizados pela prefeitura após a elaboração do Plano de Águas Pluviais da região de interesse. Com o modelo devidamente calibrado por meio de dados experimentais, foi realizada a validação do mesmo através da simulação de inundações nesta região. Apesar de técnicas de otimização acopladas à plataforma MOHID terem sido utilizadas pela primeira vez em um rio de montanha, os resultados apresentaram-se importantes e qualitativamente satisfatórios do ponto de vista de auxílio à tomada de decisões, tendo como base a prevenção de danos causados pelas elevações da lâmina dágua que ocorrem frequentemente em Nova Friburgo, como por exemplo, a recente tragédia de janeiro de 2011 ocorrida na Região Serrana do Estado do Rio de Janeiro.
Resumo:
A presente dissertação tem como objetivo analisar o comportamento da solução numérica da equação de difusão anômala com distribuição de fluxo bimodal, no regime estacionário, através de dois métodos numéricos. Foram desenvolvidos modelos utilizando o Método de Elementos Finitos e o Método de Volumes Finitos para a solução numérica desta equação. No modelo do Método de Elementos Finitos utilizou-se polinômios cúbicos de Hermite como funções de interpolação. No modelo de Volumes Finitos foi utilizada uma discretização de ordem superior para a avaliação das derivadas da equação em estudo. Em ambos os métodos, os modelos desenvolvidos consideram a utilização de diferentes tipos de condições de contorno para a solução do problema. Foram analisadas as influências de parâmetros da equação, das condições de contorno e do refinamento da malha na solução numérica. Os resultados apresentam a análise de erros da solução numérica através da comparação desta com a solução analítica.