197 resultados para Analise de erros (Matematica)
Resumo:
A teoria magneto-hidrodinâmicos permite a estruturação de modelos computacionais, designados modelos MHDs, que são uma extensão da dinâmica dos fluidos para lidar com fluidos eletricamente carregados, tais como os plasmas, em que se precisa considerar os efeitos de forças eletromagnéticas. Tais modelos são especialmente úteis quando o movimento exato de uma partícula não é de interesse, sendo que as equações descrevem as evoluções de quantidades macroscópicas. Várias formas de modelos MHD têm sido amplamente utilizadas na Física Espacial para descrever muitos tipos diferentes de fenômenos de plasma, tais como reconexão magnética e interações de ventos estelares com diferentes objetos celestiais. Neste trabalho, o objetivo é analisar o comportamento de diversos fluxos numéricos em uma discretização de volumes finitos de um modelo numérico de MHD usando um esquema de malha entrelaçada sem separação direcional considerando alguns casos testes. Para as simulações, utiliza-se o código Flash, desenvolvido pela Universidade de Chicago, por ser um código de amplo interesse nas simulações astrofísicas e de fenômenos no espaço próximo à Terra. A metodologia consiste na inclusão de um fluxo numérico, permitindo melhoria com respeito ao esquema HLL.
Resumo:
Os métodos de otimização que adotam condições de otimalidade de primeira e/ou segunda ordem são eficientes e normalmente esses métodos iterativos são desenvolvidos e analisados através da análise matemática do espaço euclidiano n-dimensional, o qual tem caráter local. Esses métodos levam a algoritmos iterativos que são usados para o cálculo de minimizadores globais de uma função não linear, principalmente não-convexas e multimodais, dependendo da posição dos pontos de partida. Método de Otimização Global Topográfico é um algoritmo de agrupamento, o qual é fundamentado nos conceitos elementares da teoria dos grafos, com a finalidade de gerar bons pontos de partida para os métodos de busca local, com base nos pontos distribuídos de modo uniforme no interior da região viável. Este trabalho tem como objetivo a aplicação do método de Otimização Global Topográfica junto com um método robusto e eficaz de direções viáveis por pontos-interiores a problemas de otimização que tem restrições de igualdade e/ou desigualdade lineares e/ou não lineares, que constituem conjuntos viáveis com interiores não vazios. Para cada um destes problemas, é representado também um hiper-retângulo compreendendo cada conjunto viável, onde os pontos amostrais são gerados.