32 resultados para whether magistrate may order that parties be legally represented in QCAT
em National Center for Biotechnology Information - NCBI
Resumo:
Transcripts for two genes expressed early in alfalfa nodule development (MsENOD40 and MsENOD2) are found in mycorrhizal roots, but not in noncolonized roots or in roots infected with the fungal pathogen Rhizoctonia solani. These same two early nodulin genes are expressed in uninoculated roots upon application of the cytokinin 6-benzylaminopurine. Correlated with the expression of the two early nodulin genes, we found that mycorrhizal roots contain higher levels of trans-zeatin riboside than nonmycorrhizal roots. These data suggest that there may be conservation of signal transduction pathways between the two symbioses—nitrogen-fixing nodules and phosphate-acquiring mycorrhizae.
Resumo:
Some growth factors transduce positive growth signals, while others can act as growth inhibitors. Nuclear signaling events of previously quiescent cells stimulated with various growth factors have been studied by isolating the complexed chromatin-associated proteins and chromatin-associated proteins. Signals from the plasma membrane are integrated within the cells and quickly transduced to the nucleus. It is clear that several growth factors, such as epidermal growth factor, transforming growth factor alpha (but not transforming growth factor beta), and platelet-derived growth factor, utilize similar intracellular signaling biochemistries to modulate nucleosomal characteristics. The very rapid and consistent phosphorylation of nuclear p33, p54, and low molecular mass proteins in the range of 15-18 kDa after growth factor stimulation implies that there is a coordination and integration of the cellular signaling processes. Additionally, phosphorylation of p33 and some low molecular mass histones has been found to occur within 5 min of growth factor treatment and to reach a maximum by 30 min. In this study, we report that Neu receptor activating factor also utilizes the same signaling mechanism and causes p33 to become phosphorylated. In addition, both the tumor promoter okadaic acid (which inhibits protein phosphatases 1 and 2A) and phorbol ester (phorbol 12-tetradecanoate 13-acetate) stimulate phosphorylation of p33, p54, and low molecular mass histones. However, transforming growth factor beta, which is a growth inhibitor for fibroblasts, fails to increase p33 phosphorylation. In general, p33 phosphorylation patterns correspond to positive and negative mitogenic signal transduction. p33 isolated from the complexed chromatin-associated protein fraction appears to be a kinase, or tightly associated with a kinase, and shares antigenicity with the cell division cycle-dependent Cdk2 kinase as determined by antibody-dependent analysis. The rapid phosphorylation of nucleosomal proteins may influence sets of early genes needed for the induction and progression of the cell cycle.
Resumo:
Proteins play an important role in the biological mechanisms controlling hard tissue development, but the details of molecular recognition at inorganic crystal interfaces remain poorly characterized. We have applied a recently developed homonuclear dipolar recoupling solid-state NMR technique, dipolar recoupling with a windowless sequence (DRAWS), to directly probe the conformation of an acidic peptide adsorbed to hydroxyapatite (HAP) crystals. The phosphorylated hexapeptide, DpSpSEEK (N6, where pS denotes phosphorylated serine), was derived from the N terminus of the salivary protein statherin. Constant-composition kinetic characterization demonstrated that, like the native statherin, this peptide inhibits the growth of HAP seed crystals when preadsorbed to the crystal surface. The DRAWS technique was used to measure the internuclear distance between two 13C labels at the carbonyl positions of the adjacent phosphoserine residues. Dipolar dephasing measured at short mixing times yielded a mean separation distance of 3.2 ± 0.1 Å. Data obtained by using longer mixing times suggest a broad distribution of conformations about this average distance. Using a more complex model with discrete α-helical and extended conformations did not yield a better fit to the data and was not consistent with chemical shift analysis. These results suggest that the peptide is predominantly in an extended conformation rather than an α-helical state on the HAP surface. Solid-state NMR approaches can thus be used to determine directly the conformation of biologically relevant peptides on HAP surfaces. A better understanding of peptide and protein conformation on biomineral surfaces may provide design principles useful for the modification of orthopedic and dental implants with coatings and biological growth factors that are designed to enhance biocompatibility with surrounding tissue.
Resumo:
Pulmonary neuroepithelial bodies (NEB) are widely distributed throughout the airway mucosa of human and animal lungs. Based on the observation that NEB cells have a candidate oxygen sensor enzyme complex (NADPH oxidase) and an oxygen-sensitive K+ current, it has been suggested that NEB may function as airway chemoreceptors. Here we report that mRNAs for both the hydrogen peroxide sensitive voltage gated potassium channel subunit (KH2O2) KV3.3a and membrane components of NADPH oxidase (gp91phox and p22phox) are coexpressed in the NEB cells of fetal rabbit and neonatal human lungs. Using a microfluorometry and dihydrorhodamine 123 as a probe to assess H2O2 generation, NEB cells exhibited oxidase activity under basal conditions. The oxidase in NEB cells was significantly stimulated by exposure to phorbol esther (0.1 μM) and inhibited by diphenyliodonium (5 μM). Studies using whole-cell voltage clamp showed that the K+ current of cultured fetal rabbit NEB cells exhibited inactivating properties similar to KV3.3a transcripts expressed in Xenopus oocyte model. Exposure of NEB cells to hydrogen peroxide (H2O2, the dismuted by-product of the oxidase) under normoxia resulted in an increase of the outward K+ current indicating that H2O2 could be the transmitter modulating the O2-sensitive K+ channel. Expressed mRNAs or orresponding protein products for the NADPH oxidase membrane cytochrome b as well as mRNA encoding KV3.3a were identified in small cell lung carcinoma cell lines. The studies presented here provide strong evidence for an oxidase-O2 sensitive potassium channel molecular complex operating as an O2 sensor in NEB cells, which function as chemoreceptors in airways and in NEB related tumors. Such a complex may represent an evolutionary conserved biochemical link for a membrane bound O2-signaling mechanism proposed for other cells and life forms.
Activation of Fas by FasL induces apoptosis by a mechanism that cannot be blocked by Bcl-2 or Bcl-xL
Resumo:
Fas activation triggers apoptosis in many cell types. Studies with anti-Fas antibodies have produced conflicting results on Fas signaling, particularly the role of the Bcl-2 family in this process. Comparison between physiological ligand and anti-Fas antibodies revealed that only extensive Fas aggregation, by membrane bound FasL or aggregated soluble FasL consistently triggered apoptosis, whereas antibodies could act as death agonists or antagonists. Studies on Fas signaling in cell lines and primary cells from transgenic mice revealed that FADD/MORT1 and caspase-8 were required for apoptosis. In contrast, Bcl-2 or Bcl-xL did not block FasL-induced apoptosis in lymphocytes or hepatocytes, demonstrating that signaling for cell death induced by Fas and the pathways to apoptosis regulated by the Bcl-2 family are distinct.
Resumo:
DNA and RNA are the polynucleotides known to carry genetic information in life. Chemical variants of DNA and RNA backbones have been used in structure-function and biosynthesis studies in vitro, and in antisense pharmacology, where their properties of nuclease resistance and enhanced cellular uptake are important. This study addressed the question of whether the base(s) attached to artificial backbones encodes genetic information that can be transferred in vivo. Oligonucleotides containing chemical variants of DNA or RNA were used as primers for site-specific mutagenesis of bacteriophage f1. Progeny phage were scored both genetically and physically for the inheritance of information originally encoded by bases attached to the nonstandard backbones. Four artificial backbone chemistries were tested: phosphorothioate DNA, phosphorothioate RNA, 2'-O-methyl RNA and methylphosphonate DNA. All four were found capable of faithful information transfer from their attached bases when one or three artificial positions were flanked by normal DNA. Among oligonucleotides composed entirely of nonstandard backbones, only phosphorothioate DNA supported genetic information transfer in vivo.
Resumo:
Normal somatic cells invariably enter a state of irreversibly arrested growth and altered function after a finite number of divisions. This process, termed replicative senescence, is thought to be a tumor-suppressive mechanism and an underlying cause of aging. There is ample evidence that escape from senescence, or immortality, is important for malignant transformation. By contrast, the role of replicative senescence in organismic aging is controversial. Studies on cells cultured from donors of different ages, genetic backgrounds, or species suggest that senescence occurs in vivo and that organismic lifespan and cell replicative lifespan are under common genetic control. However, senescent cells cannot be distinguished from quiescent or terminally differentiated cells in tissues. Thus, evidence that senescent cells exist and accumulate with age in vivo is lacking. We show that several human cells express a beta-galactosidase, histochemically detectable at pH 6, upon senescence in culture. This marker was expressed by senescent, but not presenescent, fibroblasts and keratinocytes but was absent from quiescent fibroblasts and terminally differentiated keratinocytes. It was also absent from immortal cells but was induced by genetic manipulations that reversed immortality. In skin samples from human donors of different age, there was an age-dependent increase in this marker in dermal fibroblasts and epidermal keratinocytes. This marker provides in situ evidence that senescent cells may exist and accumulate with age in vivo.
Resumo:
We have detected an endoribonucleolytic activity in human cell extracts that processes the Escherichia coli 9S RNA and outer membrane protein A (ompA) mRNA with the same specificity as RNase E from E. coli. The human enzyme was partially purified by ion-exchange chromatography, and the active fractions contained a protein that was detected with antibodies shown to recognize E. coli RNase E. RNA containing four repeats of the destabilizing motif AUUUA and RNA from the 3' untranslated region of human c-myc mRNA were also found to be cleaved by E. coli RNase E and its human counterpart in a fashion that may suggest a role of this activity in mammalian mRNA decay. It was also found that RNA containing more than one AUUUA motif was cleaved more efficiently than RNA with only one or a mutated motif. This finding of a eukaryotic endoribonucleolytic activity corresponding to RNase E indicates an evolutionary conservation of the components of mRNA degradation systems.
Resumo:
Mutant mice produced by gene targeting in embryonic stem (ES) cells often have a complex or embryonic lethal phenotype. In these cases, it would be helpful to identify tissues and cell types first affected in mutant embryos by following the contribution to chimeras of ES cells homozygous for the mutant allele. Although a number of strategies for following ES cell development in vivo have been reported, each has limitations that preclude its general application. In this paper, we describe ES cell lines that can be tracked to every nucleated cell type in chimeras at all developmental stages. These lines were derived from blastocysts of mice that carry an 11-Mb beta-globin transgene on chromosome 3. The transgene is readily detected by DNA in situ hybridization, providing an inert, nuclear-localized marker whose presence is not affected by transcriptional or translational controls. The "WW" series of ES lines possess the essential features of previously described ES lines, including giving rise to a preponderance of male chimeras, all of which have to date exhibited germ-line transmission. In addition, clones selected for single or double targeting events form strong chimeras, demonstrating the feasibility of using WW6 cells to identify phenotypes associated with the creation of a null mutant.
Resumo:
Triabin, a 142-residue protein from the saliva of the blood-sucking triatomine bug Triatoma pallidipennis, is a potent and selective thrombin inhibitor. Its stoichiometric complex with bovine α-thrombin was crystallized, and its crystal structure was solved by Patterson search methods and refined at 2.6-Å resolution to an R value of 0.184. The analysis revealed that triabin is a compact one-domain molecule essentially consisting of an eight-stranded β-barrel. The eight strands A to H are arranged in the order A-C-B-D-E-F-G-H, with the first four strands exhibiting a hitherto unobserved up-up-down-down topology. Except for the B-C inversion, the triabin fold exhibits the regular up-and-down topology of lipocalins. In contrast to the typical ligand-binding lipocalins, however, the triabin barrel encloses a hydrophobic core intersected by a unique salt-bridge cluster. Triabin interacts with thrombin exclusively via its fibrinogen-recognition exosite. Surprisingly, most of the interface interactions are hydrophobic. A prominent exception represents thrombin’s Arg-77A side chain, which extends into a hydrophobic triabin pocket forming partially buried salt bridges with Glu-128 and Asp-135 of the inhibitor. The fully accessible active site of thrombin in this complex is in agreement with its retained hydrolytic activity toward small chromogenic substrates. Impairment of thrombin’s fibrinogen converting activity or of its thrombomodulin-mediated protein C activation capacity upon triabin binding is explained by usage of overlapping interaction sites of fibrinogen, thrombomodulin, and triabin on thrombin. These data demonstrate that triabin inhibits thrombin via a novel and unique mechanism that might be of interest in the context of potential therapeutic applications.
Resumo:
Antigen-specific effector T cells are prerequisite to immune protection, but because of the lack of effector cell-specific markers, their generation and differentiation has been difficult to study. We report that effector cells are highly enriched in a T cell subset that can be specifically identified in transgenic (T-GFP) mice expressing green fluorescent protein (GFP) under control of the murine CD4 promoter and proximal enhancer. Consistent with previous studies of these transcriptional control elements, GFP was strongly and specifically expressed in nearly all resting and short-term activated CD4+ and CD8+ T cells. However, when T-GFP mice were challenged with vaccinia virus, allogeneic tumor cells, or staphylococcal enterotoxin A, the cytotoxic and IFN-γ-producing T cells lost GFP expression. Upon T cell receptor (TCR) ligation by αCD3, sorted GFP+ cells fluxed calcium and proliferated vigorously. In contrast, GFP− effector cells showed a diminished calcium flux and did not proliferate. Instead, they underwent apoptosis unless supplied with exogenous IL-2. By reverse transcription–PCR analysis, the GFP− cells up-regulated the pro-apoptotic molecule, Fas-L, and down-regulated gene expression of the proximal TCR signaling molecule, CD3ζ, and c-jun, a component of the AP-1 transcription factor. Thus, differential regulation of TCR signaling may explain the divergent responses of naïve and effector T cells to antigen stimulation.
Resumo:
Lipoprotein lipase (LPL) is the central enzyme in plasma triglyceride hydrolysis. In vitro studies have shown that LPL also can enhance lipoprotein uptake into cells via pathways that are independent of catalytic activity but require LPL as a molecular bridge between lipoproteins and proteoglycans or receptors. To investigate whether this bridging function occurs in vivo, two transgenic mouse lines were established expressing a muscle creatine kinase promoter-driven human LPL (hLPL) minigene mutated in the catalytic triad (Asp156 to Asn). Mutated hLPL was expressed only in muscle and led to 3,100 and 3,500 ng/ml homodimeric hLPL protein in post-heparin plasma but no hLPL catalytic activity. Less than 5 ng/ml hLPL was found in preheparin plasma, indicating that proteoglycan binding of mutated LPL was not impaired. Expression of inactive LPL did not rescue LPL knock-out mice from neonatal death. On the wild-type (LPL2) background, inactive LPL decreased very low density lipoprotein (VLDL)-triglycerides. On the heterozygote LPL knock-out background (LPL1) background, plasma triglyceride levels were lowered 22 and 33% in the two transgenic lines. After injection of radiolabeled VLDL, increased muscle uptake was observed for triglyceride-derived fatty acids (LPL2, 1.7×; LPL1, 1.8×), core cholesteryl ether (LPL2, 2.3×; LPL1, 2.7×), and apolipoprotein (LPL1, 1.8×; significantly less than cholesteryl ether). Skeletal muscle from transgenic lines had a mitochondriopathy with glycogen accumulation similar to mice expressing active hLPL in muscle. In conclusion, it appears that inactive LPL can act in vivo to mediate VLDL removal from plasma and uptake into tissues in which it is expressed.
Resumo:
Hearing is one of the last sensory modalities to be subjected to genetic analysis in Drosophila melanogaster. We describe a behavioral assay for auditory function involving courtship among groups of males triggered by the pulse component of the courtship song. In a mutagenesis screen for mutations that disrupt the auditory response, we have recovered 15 mutations that either reduce or abolish this response. Mutant audiograms indicate that seven mutants reduced the amplitude of the response at all intensities. Another seven abolished the response altogether. The other mutant, 5L3, responded only at high sound intensities, indicating that the threshold was shifted in this mutant. Six mutants were characterized in greater detail. 5L3 had a general courtship defect; courtship of females by 5L3 males also was affected strongly. 5P1 males courted females normally but had reduced success at copulation. 5P1 and 5N18 showed a significant decrement in olfactory response, indicating that the defects in these mutations are not specific to the auditory pathway. Two other mutants, 5M8 and 5N30, produced amotile sperm although in 5N30 this phenotype was genetically separable from the auditory phenotype. Finally, a new adult circling behavior phenotype, the pirouette phenotype, associated with massive neurodegeneration in the brain, was discovered in two mutants, 5G10 and 5N18. This study provides the basis for a genetic and molecular dissection of auditory mechanosensation and auditory behavior.
Resumo:
Anatomical, physiological, and lesion data implicate multiple cortical regions in the complex experience of pain. These regions include primary and secondary somatosensory cortices, anterior cingulate cortex, insular cortex, and regions of the frontal cortex. Nevertheless, the role of different cortical areas in pain processing is controversial, particularly that of primary somatosensory cortex (S1). Human brain-imaging studies do not consistently reveal pain-related activation of S1, and older studies of cortical lesions and cortical stimulation in humans did not uncover a clear role of S1 in the pain experience. Whereas studies from a number of laboratories show that S1 is activated during the presentation of noxious stimuli as well as in association with some pathological pain states, others do not report such activation. Several factors may contribute to the different results among studies. First, we have evidence demonstrating that S1 activation is highly modulated by cognitive factors that alter pain perception, including attention and previous experience. Second, the precise somatotopic organization of S1 may lead to small focal activations, which are degraded by sulcal anatomical variability when averaging data across subjects. Third, the probable mixed excitatory and inhibitory effects of nociceptive input to S1 could be disparately represented in different experimental paradigms. Finally, statistical considerations are important in interpreting negative findings in S1. We conclude that, when these factors are taken into account, the bulk of the evidence now strongly supports a prominent and highly modulated role for S1 cortex in the sensory aspects of pain, including localization and discrimination of pain intensity.
Resumo:
The predisposition to colon cancer is multigenetically controlled in animals and probably also in humans. We have analyzed the multigenic control of susceptibility to 1,2-dimethylhydrazine-induced colon tumors in mice by using a set of 20 homozygous CcS/Dem recombinant congenic strains, each of which contains a different random subset of approximately 12.5% of genes from the susceptible strain STS/A and 87.5% of genes from the relatively resistant strain BALB/cHeA. Some CcS/Dem strains received the alleles from the susceptible strain STS/A at one or more of the multiple colon tumor susceptibility loci and are susceptible, whereas others are resistant. Linkage analysis shows that these susceptibility genes are different from the mouse homologs of the genes known to be somatically mutated in human colon cancer (KRAS2, TP53, DCC, MCC, APC, MSH2, and probably also MLH1). Different subsets of genes control tumor numbers and size. Two colon cancer susceptibility genes, Scc1 and Scc2, map to mouse chromosome 2. The Scc1 locus has been mapped to a narrow region of 2.4 centimorgans (90% confidence interval).