4 resultados para wavelength tunable
em National Center for Biotechnology Information - NCBI
Resumo:
We examined the mechanisms by which two different types of photonic radiation, short wavelength UV (UV-C) and γ radiation, activate transcription factor NF-κB. Exposure of mammalian cells to either form of radiation resulted in induction with similar kinetics of NF-κB DNA binding activity, nuclear translocation of its p65(RelA) subunit, and degradation of the major NF-κB inhibitor IκBα. In both cases, induction of NF-κB activity was attenuated by proteasome inhibitors and a mutation in ubiquitin-activating enzyme, suggesting that both UV-C and γ radiation induce degradation of IκBs by means of the ubiquitin/proteasome pathway. However, although the induction of IκBα degradation by γ rays was dependent on its phosphorylation at Ser-32 and Ser-36, UV-C-induced IκBα degradation was not dependent on phosphorylation of these residues. Even the “super repressor” IκBα mutant, which contains alanines at positions 32 and 36, was still susceptible to UV-C-induced degradation. Correspondingly, we found that γ radiation led to activation of IKK, the protein kinase that phosphorylates IκBα at Ser-32 and Ser-36, whereas UV-C radiation did not. Furthermore, expression of a catalytically inactive IKKβ mutant prevented NF-κB activation by γ radiation, but not by UV-C. These results indicate that γ radiation and UV-C activate NF-κB through two distinct mechanisms.
Resumo:
Chemical cross-linking is a potentially useful technique for probing the architecture of multiprotein complexes. However, analyses using typical bifunctional cross-linkers often suffer from poor yields, and large-scale modification of nucleophilic side chains can result in artifactual results attributable to structural destabilization. We report here the de novo design and development of a type of protein cross-linking reaction that uses a photogenerated oxidant to mediate rapid and efficient cross-linking of associated proteins. The process involves brief photolysis of tris-bipyridylruthenium(II) dication with visible light in the presence of the electron acceptor ammonium persulfate and the proteins of interest. Very high yields of cross-linked products can be obtained with irradiation times of <1 second. This chemistry obviates many of the problems associated with standard cross-linking reagents.
Resumo:
The synthesis of novel fluorogenic retro-aldol substrates for aldolase antibody 38C2 is described. These substrates are efficiently and specifically processed by antibody aldolases but not by natural cellular enzymes. Together, the fluorogenic substrates and antibody aldolases provide reporter gene systems that are compatible with living cells. The broad scope of the antibody aldolase allows for the processing of a range of substrates that can be designed to allow fluorescence monitoring at a variety of wavelengths. We also have developed the following concept in fluorescent protein tags. β-Diketones bearing a fluorescent tag are bound covalently by the aldolase antibody and not other proteins. We anticipate that proteins fused with the antibody can be tagged specifically and covalently within living cells with fluorophores of virtually any color, thereby providing an alternative to green fluorescent protein fusions.
Resumo:
NADPH diaphorase (NADPH dehydrogenase; EC 1.6.99.1) histochemistry labels neurons that synthesize the neurotransmitter nitric oxide (NO). In retina, it has been demonstrated that NO can affect the metabolism of cGMP in rod photoreceptors. To investigate potential involvement of NO in cone photoreceptor activity, we utilized NADPH diaphorase histochemistry to study the cone-dominated retina of the tree shrew (Tupaia belangeri). Unexpectedly, our results revealed different NADPH diaphorase activity in the cellular subcompartments of the spectral classes of cone photoreceptors. Although all cones showed intense labeling of inner segment ellipsoids, the short-wavelength-sensitive (SWS or "blue-sensitive") cones and the rods displayed intense staining of the myoid inner segment subcompartment as well. Furthermore, only SWS cones and rods displayed surface labeling of their nuclei. These findings indicate a manner in which SWS cones differ biochemically from other cone types and in which they are more similar to rods. Such differences may underlie some of the unusual functional properties of the SWS cone system, which have been attributed to postreceptoral processes.