3 resultados para variable-frequency drive

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The hsd genes of Mycoplasma pulmonis encode restriction and modification enzymes exhibiting a high degree of sequence similarity to the type I enzymes of enteric bacteria. The S subunits of type I systems dictate the DNA sequence specificity of the holoenzyme and are required for both the restriction and the modification reactions. The M. pulmonis chromosome has two hsd loci, both of which contain two hsdS genes each and are complex, site-specific DNA inversion systems. Embedded within the coding region of each hsdS gene are a minimum of three sites at which DNA inversions occur to generate extensive amino acid sequence variations in the predicted S subunits. We show that the polymorphic hsdS genes produced by gene rearrangement encode a family of functional S subunits with differing DNA sequence specificities. In addition to creating polymorphisms in hsdS sequences, DNA inversions regulate the phase-variable production of restriction activity because the other genes required for restriction activity (hsdR and hsdM) are expressed only from loci that are oriented appropriately in the chromosome relative to the hsd promoter. These data cast doubt on the prevailing paradigms that restriction systems are either selfish or function to confer protection from invasion by foreign DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An HLA allele-specific cytotoxic T lymphocyte response is thought to influence the rate of disease progression in HIV-1-infected individuals. In a prior study of 139 HIV-1-infected homosexual men, we identified HLA class I alleles and observed an association of specific alleles with different relative hazards for progression to AIDS. Seeking an explanation for this association, we searched HIV-1 protein sequences to determine the number of peptides matching motifs defined by combinations of specific amino acids reported to bind 16 class I alleles. Analyzing complete sequences of 12 clade B HIV isolates, we determined the number of allele motifs that were conserved (occurring in all 12 isolates) and nonconserved (occurring in only one isolate), as well as the average number of allele motifs per isolate. We found significant correlations with an allele’s association with disease progression for counts of conserved motifs in gag (R = 0.73; P = 0.002), pol (R = 0.58, P = 0.024), gp120 (R = 0.78, P = 0.00056), and total viral protein sequences (R = 0.67, P = 0.0058) and also for counts of nonconserved motifs in gag (R = 0.62, P = 0.013), pol (R = 0.74, P = 0.0017), gp41 (R = 0.52, P = 0.046), and total viral protein (R = 0.71, P = 0.0033). We also found significant correlations for the average number of motifs per isolate for gag, pol, gp120, and total viral protein. This study provides a plausible functional explanation for the observed association of different HLA alleles with variable rates of disease progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most migratory bird populations are composed of individuals that migrate and individuals that remain resident. While the role of ecological factors in maintaining this behavioral dimorphism has received much attention, the importance of genetic constraints on the evolution of avian migration has not yet been considered. Drawing on the recorded migratory activities of 775 blackcaps (Sylvia atricapilla) from a partially migratory population in southern France, we tested two alternative genetic models about the relationship between incidence and amount of migratory activity. The amount of migratory activity could be the continuous variable “underlying” the phenotypic expression of migratory urge, or, alternatively, the expression of both traits could be controlled by two separate genetic systems. The distributions of migratory activities in five different cohorts and the inheritance pattern derived from selective breeding experiments both indicate that incidence and amount of migratory activity are two aspects of one trait. Thus, all birds without measurable activity have activity levels at the low end of a continuous distribution, below the limit of expression or detection. The phenotypic dichotomy “migrant–nonmigrant” is caused by a threshold which may not be fixed but influenced both genetically and environmentally. This finding has profound implications for the evolution of migration: the transition from migratoriness to residency should not only be driven by selection favoring resident birds but also by selection for lower migratory activity. This potential for selection on two aspects, residency and migration distance, of the same trait may enable extremely rapid evolutionary changes to occur in migratory behavior.