5 resultados para usage-based

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The psbA gene of the chloroplast genome has a codon usage that is unusual for plant chloroplast genes. In the present study the evolutionary status of this codon usage is tested by reconstructing putative ancestral psbA sequences to determine the pattern of change in codon bias during angiosperm divergence. It is shown that the codon biases of the ancestral genes are much stronger than all extant flowering plant psbA genes. This is related to previous work that demonstrated a significant increase in synonymous substitution in psbA relative to other chloroplast genes. It is suggested, based on the two lines of evidence, that the codon bias of this gene currently is not being maintained by selection. Rather, the atypical codon bias simply may be a remnant of an ancestral codon bias that now is being degraded by the mutation bias of the chloroplast genome, in other words, that the psbA gene is not at equilibrium. A model for the evolution of selective pressure on the codon usage of plant chloroplast genes is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In human beings of both sexes, dehydroepiandrosterone sulfate (DHEAS) circulating in blood is mostly an adrenally secreted steroid whose serum concentration (in the micromolar range and 30–50% higher in men than in women) decreases with age, toward ≈20–10% of its value in young adults during the 8th and 9th decades. The mechanism of action of DHEA and DHEAS is poorly known and may include partial transformation into sex steroids, increase of bioavailable insulin-like growth factor I, and effects on neurotransmitter receptors. Whether there is a cause-to-effect relationship between the decreasing levels of DHEAS with age and physiological and pathological manifestations of aging is still undecided, but this is of obvious theoretical and practical interest in view of the easy restoration by DHEA administration. Here we report on 622 subjects over 65 years of age, studied for the 4 years since DHEAS baseline values had been obtained, in the frame of the PAQUID program, analyzing the functional, psychological, and mental status of a community-based population in the south-west of France. We confirm the continuing decrease of DHEAS serum concentration with age, more in men than in women, even if men retain higher levels. Significantly lower values of baseline DHEAS were recorded in women in cases of functional limitation (Instrumental Activities of Daily Living), confinement, dyspnea, depressive symptomatology, poor subjective perception of health and life satisfaction, and usage of various medications. In men, there was a trend for the same correlations, even though not statistically significant in most categories. No differences in DHEAS levels were found in cases of incident dementia in the following 4 years. In men (but not in women), lower DHEAS was significantly associated with increased short-term mortality at 2 and 4 years after baseline measurement. These results, statistically established by taking into account corrections for age, sex, and health indicators, suggest the need for further careful trials of the administration of replacement doses of DHEA in aging humans. Indeed, the first noted results of such “treatment” are consistent with correlations observed here between functional and psychological status and endogenous steroid serum concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We first review what is known about patterns of codon usage bias in Drosophila and make the following points: (i) Drosophila genes are as biased or more biased than those in microorganisms. (ii) The level of bias of genes and even the particular pattern of codon bias can remain phylogenetically invariant for very long periods of evolution. (iii) However, some genes, even very tightly linked genes, can change very greatly in codon bias across species. (iv) Generally G and especially C are favored at synonymous sites in biased genes. (v) With the exception of aspartic acid, all amino acids contribute significantly and about equally to the codon usage bias of a gene. (vi) While most individual amino acids that can use G or C at synonymous sites display a preference for C, there are exceptions: valine and leucine, which prefer G. (vii) Finally, smaller genes tend to be more biased than longer genes. We then examine possible causes of these patterns and discount mutation bias on three bases: there is little evidence of regional mutation bias in Drosophila, mutation bias is likely toward A+T (the opposite of codon usage bias), and not all amino acids display the preference for the same nucleotide in the wobble position. Two lines of evidence support a selection hypothesis based on tRNA pools: highly biased genes tend to be highly and/or rapidly expressed, and the preferred codons in highly biased genes optimally bind the most abundant isoaccepting tRNAs. Finally, we examine the effect of bias on DNA evolution and confirm that genes with high codon usage bias have lower rates of synonymous substitution between species than do genes with low codon usage bias. Surprisingly, we find that genes with higher codon usage bias display higher levels of intraspecific synonymous polymorphism. This may be due to opposing effects of recombination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Support for molecular biology researchers has been limited to traditional library resources and services in most academic health sciences libraries. The University of Washington Health Sciences Libraries have been providing specialized services to this user community since 1995. The library recruited a Ph.D. biologist to assess the molecular biological information needs of researchers and design strategies to enhance library resources and services. A survey of laboratory research groups identified areas of greatest need and led to the development of a three-pronged program: consultation, education, and resource development. Outcomes of this program include bioinformatics consultation services, library-based and graduate level courses, networking of sequence analysis tools, and a biological research Web site. Bioinformatics clients are drawn from diverse departments and include clinical researchers in need of tools that are not readily available outside of basic sciences laboratories. Evaluation and usage statistics indicate that researchers, regardless of departmental affiliation or position, require support to access molecular biology and genetics resources. Centralizing such services in the library is a natural synergy of interests and enhances the provision of traditional library resources. Successful implementation of a library-based bioinformatics program requires both subject-specific and library and information technology expertise.