2 resultados para urine specific gravity

em National Center for Biotechnology Information - NCBI


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The putative Ca2+-channel blocker LaCl3 prevented the gravitropic bending of cut snapdragon (Antirrhinum majus L.) spikes (S. Philosoph-Hadas, S. Meir, I. Rosenberger, A.H. Halevy [1996] Plant Physiol 110: 301–310) and inhibited stem curvature to a greater extent than vertical and horizontal stem elongation at the bending zone. This might indicate that LaCl3, which modulates cytosolic Ca2+, does not influence general stem-growth processes but may specifically affect other gravity-associated processes occurring at the stem-bending zone. Two such specific gravity-dependent events were found to occur in the bending zone of snapdragon spikes: sedimentation of starch-containing chloroplasts at the bottom of stem cortex cells, as seen in cross-sections, and establishment of an ethylene gradient across the stem. Our results show that the lateral sedimentation of chloroplasts associated with gravity sensing was prevented in cross-sections taken from the bending zone of LaCl3-treated and subsequently gravistimulated spikes and that LaCl3 completely prevented the gravity-induced, asymmetric ethylene production established across the stem-bending zone. These data indicate that LaCl3 inhibits stem curvature of snapdragon spikes by preventing several gravity-dependent processes. Therefore, we propose that the gravitropic response of shoots could be mediated through a Ca2+-dependent pathway involving modulation of cytosolic Ca2+ at various stages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isoprostanes (iPs) are free radical catalyzed prostaglandin isomers. Analysis of individual isomers of PGF2α—F2-iPs—in urine has reflected lipid peroxidation in humans. However, up to 64 F2-iPs may be formed, and it is unknown whether coordinate generation, disposition, and excretion of F2-iPs occurs in humans. To address this issue, we developed methods to measure individual members of the four structural classes of F2-iPs, using liquid chromatography/tandem mass spectrometry (LC/MS/MS), in which sample preparation is minimized. Authentic standards of F2-iPs of classes III, IV, V, and VI were used to identify class-specific ions for multiple reaction monitoring. Using iPF2α-VI as a model compound, we demonstrated the reproducibility of the assay in human urine. Urinary levels of all F2-iPs measured were elevated in patients with familial hypercholesterolemia. However, only three of eight F2-iPs were elevated in patients with congestive heart failure, compared with controls. Paired analyses by GC/MS and LC/MS/MS of iPF2α-VI in hypercholesterolemia and of 8,12-iso-iPF2α-VI in congestive heart failure were highly correlated. This approach will permit high throughput analysis of multiple iPs in human disease.