5 resultados para urine reagent strip

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isoprostanes (iPs) are free radical catalyzed prostaglandin isomers. Analysis of individual isomers of PGF2α—F2-iPs—in urine has reflected lipid peroxidation in humans. However, up to 64 F2-iPs may be formed, and it is unknown whether coordinate generation, disposition, and excretion of F2-iPs occurs in humans. To address this issue, we developed methods to measure individual members of the four structural classes of F2-iPs, using liquid chromatography/tandem mass spectrometry (LC/MS/MS), in which sample preparation is minimized. Authentic standards of F2-iPs of classes III, IV, V, and VI were used to identify class-specific ions for multiple reaction monitoring. Using iPF2α-VI as a model compound, we demonstrated the reproducibility of the assay in human urine. Urinary levels of all F2-iPs measured were elevated in patients with familial hypercholesterolemia. However, only three of eight F2-iPs were elevated in patients with congestive heart failure, compared with controls. Paired analyses by GC/MS and LC/MS/MS of iPF2α-VI in hypercholesterolemia and of 8,12-iso-iPF2α-VI in congestive heart failure were highly correlated. This approach will permit high throughput analysis of multiple iPs in human disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction of light-activated rhodopsin with transducin (T) is the first event in visual signal transduction. We use covalent crosslinking approaches to map the contact sites in interaction between the two proteins. Here we use a photoactivatable reagent, N-[(2-pyridyldithio)-ethyl], 4-azido salicylamide. The reagent is attached to the SH group of cytoplasmic monocysteine rhodopsin mutants by a disulfide-exchange reaction with the pyridylthio group, and the derivatized rhodopsin then is complexed with T by illumination at λ >495 nm. Subsequent irradiation of the complex at λ310 nm generates covalent crosslinks between the two proteins. Crosslinking was demonstrated between T and a number of single cysteine rhodopsin mutants. However, sites of crosslinks were investigated in detail only between T and the rhodopsin mutant S240C (cytoplasmic loop V-VI). Crosslinking occurred predominantly with Tα. For identification of the sites of crosslinks in Tα, the strategy used involved: (i) derivatization of all of the free cysteines in the crosslinked proteins with N-ethylmaleimide; (ii) reduction of the disulfide bond linking the two proteins and isolation of all of the Tα species carrying the crosslinked moiety with a free SH group; (iii) adduct formation of the latter with the N-maleimide moiety of the reagent, maleimido-butyryl-biocytin, containing a biotinyl group; (iv) trypsin degradation of the resulting Tα derivatives and isolation of Tα peptides carrying maleimido-butyryl-biocytin by avidin-agarose chromatography; and (v) identification of the isolated peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. We found that crosslinking occurred mainly to two C-terminal peptides in Tα containing the amino acid sequences 310–313 and 342–345.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contact sites in interaction between light-activated rhodopsin and transducin (T) have been investigated by using a chemically preactivated crosslinking reagent, N-succinimidyl 3-(2-pyridyldithio)propionate. The 3 propionyl-N-succinimidyl group in the reagent was attached by a disulfide exchange reaction to rhodopsin mutants containing single reactive cysteine groups in the cytoplasmic loops. Complex formation between the derivatized rhodopsin mutants and T was carried out by illumination at λ > 495 nm. Subsequent increase in pH (from 6 to 7.5 or higher) of the complex resulted in crosslinking of rhodopsin to the Tα subunit. Crosslinking to Tα was demonstrated for the rhodopsin mutants K141C, S240C, and K248C, and the crosslinked sites in Tα were identified for the rhodopsin mutant S240C. The peptides carrying the crosslinking moiety were isolated from the trypsin-digested peptide mixture, and their identification was carried out by matrix-assisted laser desorption ionization–time of flight mass spectrometry. The main site of crosslinking is within the peptide sequence, Leu-19–Arg-28 at the N-terminal region of Tα. The total results show that both the N and the C termini of Tα are in close vicinity to the third cytoplasmic loop of rhodopsin in the complex between rhodopsin and T.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multicellular obligately photoautotrophic alga Volvox is composed of only two types of cells, somatic and reproductive. Therefore, Volvox provides the simplest model system for the study of multicellularity. Metabolic labeling experiments using radioactive precursors are crucial for the detection of stage- and cell-type-specific proteins, glycoproteins, lipids, and carbohydrates. However, wild-type Volvox lacks import systems for sugars or amino acids. To circumvent this problem, the hexose/H+ symporter (HUP1) gene from the unicellular alga Chlorella was placed under the control of the constitutive Volvox beta-tubulin promoter. The corresponding transgenic Volvox strain synthesized the sugar transporter in a functional state and was able to efficiently incorporate 14C from labeled glucose or glucosamine. Sensitivity toward the toxic glucose/mannose analogue 2-deoxy-glucose increased by orders of magnitude in transformants. Thus we report the successful transformation of Volvox with a gene of heterologous origin. The chimeric gene may be selected for in either a positive or a negative manner, because transformants exhibit both prolonged survival in the dark in the presence of glucose and greatly increased sensitivity to the toxic sugar 2-deoxyglucose. The former trait may make the gene useful as a dominant selectable marker for use in transformation studies, whereas the latter trait may make it useful in development of a gene-targeting system.