2 resultados para underprivileged backgrounds

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in 12 genes regulating Drosophila melanogaster mushroom body (MB) development were each studied in two genetic backgrounds. In all cases, brain structure was qualitatively or quantitatively different after replacement of the "original" genetic background with that of the Canton Special wild-type strain. The mushroom body miniature gene (mbm) was investigated in detail. mbm supports the maintenance of MB Kenyon cell fibers in third instar larvae and their regrowth during metamorphosis. Adult mbm1 mutant females are lacking many or most Kenyon cell fibers and are impaired in MB-mediated associative odor learning. We show here that structural defects in mbm1 are apparent only in combination with an X-linked, dosage-dependent modifier (or modifiers). In the Canton Special genetic background, the mbm1 anatomical phenotype is suppressed, and MBs develop to a normal size. However, the olfactory learning phenotype is not fully restored, suggesting that submicroscopic defects persist in the MBs. Mutant mbm1 flies with full-sized MBs have normal retention but show a specific acquisition deficit that cannot be attributed to reductions in odor avoidance, shock reactivity, or locomotor behavior. We propose that polymorphic gene interactions (in addition to ontogenetic factors) determine MB size and, concomitantly, the ability to recognize and learn odors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After the introduction of mitochondria with a mixture of mutant and wild-type mitochondrial DNA (mtDNA) into a human rho degree cell line (143B.206), Yoneda et al. [Yoneda, M., Chomyn, A., Martinuzzi, A., Hurko, O. & Attardi, G. (1992) Proc. Natl. Acad. Sci. USA 89, 11164-11168] observed a shift in the proportion of the two mitochondrial genotypes in a number of cybrid clones. In every case where a shift was observed, there was an increase in the proportion of mutant mtDNA. By using the same cell line (143B.206 rho degree), we also generated cybrids that were either stable in their mitochondrial genotype or showed an increase in the proportion of mutant mtDNA. However, temporal analysis of the same mutant mtDNA type in another rho degree cell line revealed a quite distinct outcome. Those clones that showed a change shifted toward higher levels of wild-type rather than mutant mtDNA. These results indicate that the nuclear genetic background of the recipient (rho degree) cell can influence the segregation of mutant and wild-type mitochondrial genomes in cell cybrids.