23 resultados para ultrastructural labeling

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we demonstrate, at an ultrastructural level, the in situ distribution of heterogeneous nuclear RNA transcription sites after microinjection of 5-bromo-UTP (BrUTP) into the cytoplasm of living cells and subsequent postembedding immunoelectron microscopic visualization after different labeling periods. Moreover, immunocytochemical localization of several pre-mRNA transcription and processing factors has been carried out in the same cells. This high-resolution approach allowed us to reveal perichromatin regions as the most important sites of nucleoplasmic RNA transcription and the perichromatin fibrils (PFs) as in situ forms of nascent transcripts. Furthermore, we show that transcription takes place in a rather diffuse pattern, without notable local accumulation of transcription sites. RNA polymerase II, heterogeneous nuclear ribonucleoprotein (hnRNP) core proteins, general transcription factor TFIIH, poly(A) polymerase, splicing factor SC-35, and Sm complex of small nuclear ribonucleoproteins (snRNPs) are associated with PFs. This strongly supports the idea that PFs are also sites of major pre-mRNA processing events. The absence of nascent transcripts, RNA polymerase II, poly(A) polymerase, and hnRNPs within the clusters of interchromatin granules rules out the possibility that this domain plays a role in pre-mRNA transcription and polyadenylation; however, interchromatin granule-associated zones contain RNA polymerase II, TFIIH, and Sm complex of snRNPs and, after longer periods of BrUTP incubation, also Br-labeled RNA. Their role in nuclear functions still remains enigmatic. In the nucleolus, transcription sites occur in the dense fibrillar component. Our fine structural results show that PFs represent the major nucleoplasmic structural domain involved in active pre-mRNA transcriptional and processing events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of molecular genetics for introducing fluorescent molecules enables the use of donor–donor energy migration to determine intramolecular distances in a variety of proteins. This approach can be applied to examine the overall molecular dimensions of proteins and to investigate structural changes upon interactions with specific target molecules. In this report, the donor–donor energy migration method is demonstrated by experiments with the latent form of plasminogen activator inhibitor type 1. Based on the known x-ray structure of plasminogen activator inhibitor type 1, three positions forming the corners of a triangle were chosen. Double Cys substitution mutants (V106C-H185C, H185C-M266C, and M266C-V106C) and corresponding single substitution mutants (V106C, H185C, and M266C) were created and labeled with a sulfhydryl specific derivative of BODIPY (=the D molecule). The side lengths of this triangle were obtained from analyses of the experimental data. The analyses account for the local anisotropic order and rotational motions of the D molecules, as well as for the influence of a partial DD-labeling. The distances, as determined from x-ray diffraction, between the Cα-atoms of the positions V106C–H185C, H185C–M266C, and M266C–V106C were 60.9, 30.8, and 55.1 Å, respectively. These are in good agreement with the distances of 54 ± 4, 38 ± 3, and 55 ± 3 Å, as determined between the BODIPY groups attached via linkers to the same residues. Although the positions of the D-molecules and the Cα-atoms physically cannot coincide, there is a reasonable agreement between the methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies of the annexin family of Ca2+ binding proteins identified a soluble monomer in the absence of Ca2+ and a trimer adsorbed on the membrane surface in the presence of Ca2+. On the basis of site-directed spin-labeling studies of annexin XII at low pH, we now report a membrane-inserted form of the protein with a dramatically different structure. The data suggest that upon insertion a continuous transmembrane α-helix is reversibly formed from a helix–loop–helix motif in the solution structure. Other regions with similar membrane-insertion potential were identified in the amino acid sequence, and we propose that the corresponding helices come together to form an aqueous pore that mediates the ion channel activity reported for several annexins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc transporter-3 (ZnT-3), a member of a growing family of mammalian zinc transporters, is expressed in regions of the brain that are rich in histochemically reactive zinc (as revealed by the Timm’s stain), including entorhinal cortex, amygdala, and hippocampus. ZnT-3 protein is most abundant in the zinc-enriched mossy fibers that project from the dentate granule cells to hilar and CA3 pyramidal neurons. We show here by electron microscopy that ZnT-3 decorates the membranes of all clear, small, round synaptic vesicles (SVs) in the mossy fiber boutons of both mouse and monkey. Furthermore, up to 60–80% of these SVs contain Timm’s-stainable zinc. The coincidence of ZnT-3 on the membranes of SVs that accumulate zinc, and its homology with known zinc transporters, suggest that ZnT-3 is responsible for the transport of zinc into SVs, and hence for the ability of these neurons to release zinc upon excitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accumulated data indicate that endocytosis of the glycosylphosphatidyl-inositol-anchored protein urokinase plasminogen activator receptor (uPAR) depends on binding of the ligand uPA:plasminogen activator inhibitor-1 (PAI-1) and subsequent interaction with internalization receptors of the low-density lipoprotein receptor family, which are internalized through clathrin-coated pits. This interaction is inhibited by receptor-associated protein (RAP). We show that uPAR with bound uPA:PAI-1 is capable of entering cells in a clathrin-independent process. First, HeLaK44A cells expressing mutant dynamin efficiently internalized uPA:PAI-1 under conditions in which transferrin endocytosis was blocked. Second, in polarized Madin–Darby canine kidney (MDCK) cells, which expressed human uPAR apically, the low basal rate of uPAR ligand endocytosis, which could not be inhibited by RAP, was increased by forskolin or phorbol ester (phorbol 12-myristate 13-acetate), which selectively up-regulate clathrin-independent endocytosis from the apical domain of epithelial cells. Third, in subconfluent nonpolarized MDCK cells, endocytosis of uPA:PAI-1 was only decreased marginally by RAP. At the ultrastructural level uPAR was largely excluded from clathrin-coated pits in these cells and localized in invaginated caveolae only in the presence of cross-linking antibodies. Interestingly, a larger fraction of uPAR in nonpolarized relative to polarized MDCK cells was insoluble in Triton X-100 at 0°C, and by surface labeling with biotin we also show that internalized uPAR was mainly detergent insoluble, suggesting a correlation between association with detergent-resistant membrane microdomains and higher degree of clathrin-independent endocytosis. Furthermore, by cryoimmunogold labeling we show that 5–10% of internalized uPAR in nonpolarized, but not polarized, MDCK cells is targeted to lysosomes by a mechanism that is regulated by ligand occupancy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltage-gated sodium channels perform critical roles for electrical signaling in the nervous system by generating action potentials in axons and in dendrites. At least 10 genes encode sodium channels in mammals, but specific physiological roles that distinguish each of these isoforms are not known. One possibility is that each isoform is expressed in a restricted set of cell types or is targeted to a specific domain of a neuron or muscle cell. Using affinity-purified isoform-specific antibodies, we find that Nav1.6 is highly concentrated at nodes of Ranvier of both sensory and motor axons in the peripheral nervous system and at nodes in the central nervous system. The specificity of this antibody was also demonstrated with the Nav1.6-deficient mouse mutant strain med, whose nodes were negative for Nav1.6 immunostaining. Both the intensity of labeling and the failure of other isoform-specific antibodies to label nodes suggest that Nav1.6 is the predominant channel type in this structure. In the central nervous system, Nav1.6 is localized in unmyelinated axons in the retina and cerebellum and is strongly expressed in dendrites of cortical pyramidal cells and cerebellar Purkinje cells. Ultrastructural studies indicate that labeling in dendrites is both intracellular and on dendritic shaft membranes. Remarkably, Nav1.6 labeling was observed at both presynaptic and postsynaptic membranes in the cortex and cerebellum. Thus, a single sodium channel isoform is targeted to different neuronal domains and can influence both axonal conduction and synaptic responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Substance P plays an important role in the transmission of pain-related information in the dorsal horn of the spinal cord. Recent immunocytochemical studies have shown a mismatch between the distribution of substance P and its receptor in the superficial laminae of the dorsal horn. Because such a mismatch was not observed by using classical radioligand binding studies, we decided to investigate further the issue of the relationship between substance P and its receptor by using an antibody raised against a portion of the carboxyl terminal of the neurokinin 1 receptor and a bispecific monoclonal antibodies against substance P and horseradish peroxidase. Light microscopy revealed a good correlation between the distributions of substance P and the neurokinin 1 receptor, both being localized with highest densities in lamina I and outer lamina II of the spinal dorsal horn. An ultrastructural double-labeling study, combining preembedding immunogold with enzyme-based immunocytochemistry, showed that most neurokinin 1 receptor immunoreactive dendrites were apposed by substance P containing boutons. A detailed quantitative analysis revealed that neurokinin 1 receptor immunoreactive dendrites received more appositions and synapses from substance P immunoreactive terminals than those not expressing the neurokinin 1 receptor. Such preferential innervation by substance P occurred in all superficial dorsal horn laminae even though neurokinin 1 receptor immunoreactive dendrites were a minority of the total number of dendritic profiles in the above laminae. These results suggest that, contrary to the belief that neuropeptides act in a diffuse manner at a considerable distance from their sites of release, substance P should act on profiles expressing the neurokinin 1 receptor at a short distance from its site of release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The isolation of thionein (T) from tissues has not been reported heretofore. T contains 20 cysteinyl residues that react with 7-fluorobenz-2-oxa-1,3-diazole-4-sulfonamide to form fluorescent adducts. In metallothionein (MT) the cysteinyl residues, which are bound to zinc, do not react. However, they do react in the presence of a chelating agent such as EDTA. The resultant difference in chemical reactivity provides a means to measure T in the absence of EDTA, (MT + T) in its presence, and, of course, MT by difference. The 7-fluorobenz-2-oxa-1,3-diazole-4-sulfonamide derivative of T can be isolated from tissue homogenates by HPLC and quantified fluorimetrically with a detection limit in the femtomolar range and a linear response over 3 orders of magnitude. Analysis of liver, kidney, and brain of rats reveals almost as much T as MT. Moreover, in contrast to earlier views, MT in tissue extracts appears to be less stable than T. The existence of T in tissues under normal physiological conditions has important implications for its function both in zinc metabolism and the redox balance of the cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The huntingtin exon 1 proteins with a polyglutamine repeat in the pathological range (51 or 83 glutamines), but not with a polyglutamine tract in the normal range (20 glutamines), form aggresome-like perinuclear inclusions in human 293 Tet-Off cells. These structures contain aggregated, ubiquitinated huntingtin exon 1 protein with a characteristic fibrillar morphology. Inclusion bodies with truncated huntingtin protein are formed at centrosomes and are surrounded by vimentin filaments. Inhibition of proteasome activity resulted in a twofold increase in the amount of ubiquitinated, SDS-resistant aggregates, indicating that inclusion bodies accumulate when the capacity of the ubiquitin–proteasome system to degrade aggregation-prone huntingtin protein is exhausted. Immunofluorescence and electron microscopy with immunogold labeling revealed that the 20S, 19S, and 11S subunits of the 26S proteasome, the molecular chaperones BiP/GRP78, Hsp70, and Hsp40, as well as the RNA-binding protein TIA-1, the potential chaperone 14–3-3, and α-synuclein colocalize with the perinuclear inclusions. In 293 Tet-Off cells, inclusion body formation also resulted in cell toxicity and dramatic ultrastructural changes such as indentations and disruption of the nuclear envelope. Concentration of mitochondria around the inclusions and cytoplasmic vacuolation were also observed. Together these findings support the hypothesis that the ATP-dependent ubiquitin–proteasome system is a potential target for therapeutic interventions in glutamine repeat disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ultrastructural features of the sieve element/companion cell complexes were screened in the stem phloem of two symplasmically loading (squash, [Cucurbita maxima L.] and Lythrum salicaria L.) and two apoplasmically loading (broad bean [Vicia faba L.] and Zinnia elegans L.) species. The distinct ultrastructural differences between the companion cells in the collection phloem of symplasmically and apoplasmically phloem-loading species continue to exist in the transport phloem. Plasmodesmograms of the stem phloem showed a universal symplasmic constriction at the interface between the sieve element/companion cell complex and the phloem parenchyma cells. This contrasts with the huge variation in symplasmic continuity between companion cells and adjoining cells in the collection phloem of symplasmically and apoplasmically loading species. Further, the ultrastructure of the companion cells in the transport phloem faintly reflected the features of the companion cells in the loading zone of the transport phloem. The companion cells of squash contained numerous small vacuoles (or vesicles), and those of L. salicaria contained a limited number of vacuoles. The companion cells of broad bean and Z. elegans possessed small wall protrusions. Implications of the present findings for carbohydrate processing in intact plants are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rates of whole body nitric oxide (NO) synthesis, plasma arginine flux, and de novo arginine synthesis and their relationships to urea production, were examined in a total of seven healthy adults receiving an L-amino acid diet for 6 days. NO synthesis was estimated by the rate of conversion of the [15N] guanidino nitrogen of arginine to plasma [15N] ureido citrulline and compared with that based on urinary nitrite (NO2-)/nitrate (NO3-) excretion. Six subjects received on dietary day 7, a 24-hr (12-hr fed/12-hr fasted) primed, constant, intravenous infusion of L-[guanidino-15N2]arginine and [13C]urea. A similar investigation was repeated with three of these subjects, plus an additional subject, in which they received L-[ureido-13C]citrulline, to determine plasma citrulline fluxes. The estimated rates (mean +/- SD) of NO synthesis over a period of 24 hr averaged 0.96 +/- 0.1 mumol .kg-1.hr-1 and 0.95 +/- 0.1 mumol.kg-1.hr-1, for the [15N]citrulline and the nitrite/nitrate methods, respectively. About 15% of the plasma arginine turnover was associated with urea formation and 1.2% with NO formation. De novo arginine synthesis averaged 9.2 +/- 1.4 mumol. kg-1.hr-1, indicating that approximately 11% of the plasma arginine flux originates via conversion of plasma citrulline to arginine. Thus, the fraction of the plasma arginine flux associated with NO and also urea synthesis in healthy humans is small, although the plasma arginine compartment serves as a significant precursor pool (54%) for whole body NO formation. This tracer model should be useful for exploring these metabolic relationships in vivo, under specific pathophysiologic states where the L-arginine-NO pathway might be altered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel photoactivatable analog of ovine corticotropin-releasing factor (ovine photoCRF) has been synthesized and characterized. A diazirine group, the 4-(1-azi-2,2,2-trifluoroethyl)benzoyl residue, was covalently bound to the amino terminus of ovine CRF (oCRF), which was N-terminally extended by a tyrosyl residue for radioactive labeling with 125I. Under mild conditions, photolysis yielded highly reactive carbenes, responsible for the formation of covalent bonds to the CRF receptor. Ovine photoCRF was shown to bind to the high-affinity site of the CRF receptor with a similar Kd value as oCRF. When radioactively iodinated ovine photoCRF (ovine 125I-photoCRF) was covalently linked to rat CRF receptor, type 1 (rCRFR1), permanently transfected into human embryonic kidney (HEK) 293 cells, a highly glycosylated 75-kDa protein was identified with SDS/PAGE. The specificity of ovine 125I-photoCRF was demonstrated by the finding that this analog could be displaced from the receptor by oCRF, but not other unrelated peptides such as vasoactive intestinal peptide. The observed size of the 75-kDa cross-link was in agreement with the molecular weight reported earlier for native CRFR1 from rat brain. Deglycosylation of the 75-kDa cross-link with peptide:N-glycosidase (PNGase) yielded a 46-kDa protein, in agreement with the molecular weight estimated from cDNA coding for rat CRFR1. The developed CRF analog, photoCRF, is expected to facilitate future biochemical and physiological analysis of CRF receptors and--by analogous strategies--of other peptide receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Site-directed chemical cleavage of lactose permease indicates that helix V is in close proximity to helices VII and VIII. To test this conclusion further, permease containing a biotin-acceptor domain and paired Cys residues at positions 148 (helix V) and 228 (helix VII), 148 and 226 (helix VII), or 148 and 275 (helix VIII) was affinity purified and labeled with a sulfhydryl-specific nitroxide spin label. Spin-spin interactions are observed with the 148/228 and 148/275 pairs, indicating close proximity between appropriate faces of helix V and helices VII and VIII. Little or no interaction is evident with the 148/226 pair, in all likelihood because position 226 is on the opposite face of helix VII from position 228. Broadening of the electron paramagnetic resonance spectra in the frozen state was used to estimate distance between the 148/228 and the 148/275 pairs. The nitroxides at positions 148 and 228 or 148 and 275 are within approximately 13-15 A. Finally, Cys residues at positions 148 and 228 are crosslinked by dibromobimane, a bifunctional crosslinker that is approximately 5 A. long, while no crosslinking is detected between Cys residues at positions 148 and 275 or 148 and 226. The results provide strong support for a structure in which helix V is in close proximity to both helices VII and VIII and is oriented in such a fashion that Cys-148 is closer to helix VII.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term potentiation (LTP), an increase in synaptic efficacy believed to underlie learning and memory mechanisms, has been proposed to involve structural modifications of synapses. Precise identification of the morphological changes associated with LTP has however been hindered by the difficulty in distinguishing potentiated or activated from nonstimulated synapses. Here we used a cytochemical method that allowed detection in CA1 hippocampus at the electron microscopy level of a stimulation-specific, D-AP5-sensitive accumulation of calcium in postsynaptic spines and presynaptic terminals following application of high-frequency trains. Morphometric analyses carried out 30-40 min after LTP induction revealed dramatic ultrastructural differences between labeled and nonlabeled synapses. The majority of labeled synapses (60%) exhibited perforated postsynaptic densities, whereas this proportion was only 20% in nonlabeled synaptic contacts. Labeled synaptic profiles were also characterized by a larger apposition zone between pre- and postsynaptic structures, longer postsynaptic densities, and enlarged spine profiles. These results add strong support to the idea that ultrastructural modifications and specifically an increase in perforated synapses are associated with LTP induction in field CA1 of hippocampus and they suggest that a majority of activated contacts may exhibit such changes.