14 resultados para two-mass model
em National Center for Biotechnology Information - NCBI
Resumo:
When NMR hydrogen exchange was used previously to monitor the kinetics of RNase A unfolding, some peptide NH protons were found to show EX2 exchange (detected by base catalysis) in addition to the expected EX1 exchange, whose rate is limited by the kinetic unfolding process. In earlier work, two groups showed independently that a restricted two-process model successfully fits published hydrogen exchange rates of native RNase A in the range 0-0.7 M guanidinium chloride. We find that this model predicts properties that are very different from the observed properties of the EX2 exchange reactions of RNase A in conditions where guanidine-induced unfolding takes place. The model predicts that EX2 exchange should be too fast to measure by the technique used, whereas it is readily measurable. Possible explanations for the contradiction are considered here, and we show that removing the restriction from the earlier two-process model is sufficient to resolve the contradiction; instead of specifying that exchange caused by global unfolding occurs by the EX2 mechanism, we allow it to occur by the general mechanism, which includes both the EX1 and EX2 cases. It is logical to remove this restriction because global unfolding of RNase A is known to give rise to EX1 exchange in these unfolding conditions. Resolving the contradiction makes it possible to determine whether populated unfolding intermediates contribute to the EX2 exchange, and this question is considered elsewhere. The results and simulations indicate that moderate or high denaturant concentrations readily give rise to EX1 exchange in native proteins. Earlier studies showed that hydrogen exchange in native proteins typically occurs by the EX2 mechanism but that high temperatures or pH values above 7 may give rise to EX1 exchange. High denaturant concentrations should be added to the list of variables likely to cause EX1 exchange.
Resumo:
Small, single-domain proteins typically fold via a compact transition-state ensemble in a process well fitted by a simple, two-state model. To characterize the rate-limiting conformational changes that underlie two-state folding, we have investigated experimentally the effects of changing solvent viscosity on the refolding of the IgG binding domain of protein L. In conjunction with numerical simulations, our results indicate that the rate-limiting conformational changes of the folding of this domain are strongly coupled to solvent viscosity and lack any significant “internal friction” arising from intrachain collisions. When compared with the previously determined solvent viscosity dependencies of other, more restricted conformational changes, our results suggest that the rate-limiting folding transition involves conformational fluctuations that displace considerable amounts of solvent. Reconciling evidence that the folding transition state ensemble is comprised of highly collapsed species with these and similar, previously reported results should provide a significant constraint for theoretical models of the folding process.
Resumo:
For the functional role of the ribosomal tRNA exit (E) site, two different models have been proposed. It has been suggested that transient E-site binding of the tRNA leaving the peptidyl (P) site promotes elongation factor G (EF-G)-dependent translocation by lowering the energetic barrier of tRNA release [Lill, R., Robertson, J. M. & Wintermeyer, W. (1989) EMBO J. 8, 3933-3938]. The alternative "allosteric three-site model" [Nierhaus, K.H. (1990) Biochemistry 29, 4997-5008] features stable, codon-dependent tRNA binding to the E site and postulates a coupling between E and aminoacyl (A) sites that regulates the tRNA binding affinity of the two sites in an anticooperative manner. Extending our testing of the two conflicting models, we have performed translocation experiments with fully active ribosomes programmed with heteropolymeric mRNA. The results confirm that the deacylated tRNA released from the P site is bound to the E site in a kinetically labile fashion, and that the affinity of binding, i.e., the occupancy of the E site, is increased by Mg2+ or polyamines. At conditions of high E-site occupancy in the posttranslocation complex, filling the A site with aminoacyl-tRNA had no influence on the E site, i.e., there was no detectable anticooperative coupling between the two sites, provided that second-round translocation was avoided by removing EF-G. On the basis of these results, which are entirely consistent with our previous results, we consider the allosteric three-site model of elongation untenable. Rather, as proposed earlier, the E site-bound state of the leaving tRNA is a transient intermediate and, as such, is a mechanistic feature of the classic two-state model of the elongating ribosome.
Resumo:
Although humanity depends on the continued, aggregate functioning of natural ecosystems, few studies have explored the impact of community structure on the stability of aggregate community properties. Here we derive the stability of the aggregate property of community biomass as a function of species’ competition coefficients for a two-species model. The model predicts that the stability of community biomass is relatively independent of the magnitude of the interaction strengths. Instead, the degree of asymmetry of the interactions appears to be key to community stability.
Resumo:
An essential component of regulated steroidogenesis is the translocation of cholesterol from the cytoplasm to the inner mitochondrial membrane where the cholesterol side-chain cleavage enzyme carries out the first committed step in steroidogenesis. Recent studies showed that a 30-kDa mitochondrial phosphoprotein, designated steroidogenic acute regulatory protein (StAR), is essential for this translocation. To allow us to explore the roles of StAR in a system amenable to experimental manipulation and to develop an animal model for the human disorder lipoid congenital adrenal hyperplasia (lipoid CAH), we used targeted gene disruption to produce StAR knockout mice. These StAR knockout mice were indistinguishable initially from wild-type littermates, except that males and females had female external genitalia. After birth, they failed to grow normally and died from adrenocortical insufficiency. Hormone assays confirmed severe defects in adrenal steroids—with loss of negative feedback regulation at hypothalamic–pituitary levels—whereas hormones constituting the gonadal axis did not differ significantly from levels in wild-type littermates. Histologically, the adrenal cortex of StAR knockout mice contained florid lipid deposits, with lesser deposits in the steroidogenic compartment of the testis and none in the ovary. The sex-specific differences in gonadal involvement support a two-stage model of the pathogenesis of StAR deficiency, with trophic hormone stimulation inducing progressive accumulation of lipids within the steroidogenic cells and ultimately causing their death. These StAR knockout mice provide a useful model system in which to determine the mechanisms of StAR’s essential roles in adrenocortical and gonadal steroidogenesis.
Resumo:
Threshold mechanisms of transcriptional activation are thought to be critical for translating continuous gradients of extracellular signals into discrete all-or-none cellular responses, such as mitogenesis and differentiation. Indeed, unequivocal evidence for a graded transcriptional response in which the concentration of inducer directly correlates with the level of gene expression in individual eukaryotic cells is lacking. By using a novel binary tetracycline regulatable retroviral vector system, we observed a graded rather than a threshold mechanism of transcriptional activation in two different model systems. When polyclonal populations of cells were analyzed at the single cell level, a dose-dependent, stepwise increase in expression of the reporter gene, green fluorescent protein (GFP), was observed by fluorescence-activated cell sorting. These data provide evidence that, in addition to the generally observed all-or-none switch, the basal transcription machinery also can respond proportionally to changes in concentration of extracellular inducers and trancriptional activators.
Resumo:
Recent advances in single molecule manipulation methods offer a novel approach to investigating the protein folding problem. These studies usually are done on molecules that are naturally organized as linear arrays of globular domains. To extend these techniques to study proteins that normally exist as monomers, we have developed a method of synthesizing polymers of protein molecules in the solid state. By introducing cysteines at locations where bacteriophage T4 lysozyme molecules contact each other in a crystal and taking advantage of the alignment provided by the lattice, we have obtained polymers of defined polarity up to 25 molecules long that retain enzymatic activity. These polymers then were manipulated mechanically by using a modified scanning force microscope to characterize the force-induced reversible unfolding of the individual lysozyme molecules. This approach should be general and adaptable to many other proteins with known crystal structures. For T4 lysozyme, the force required to unfold the monomers was 64 ± 16 pN at the pulling speed used. Refolding occurred within 1 sec of relaxation with an efficiency close to 100%. Analysis of the force versus extension curves suggests that the mechanical unfolding transition follows a two-state model. The unfolding forces determined in 1 M guanidine hydrochloride indicate that in these conditions the activation barrier for unfolding is reduced by 2 kcal/mol.
Resumo:
The Mg-chelation is found to be a prerequisite to direct protoporphyrin IX into the chlorophyll (Chl)-synthesizing branch of the tetrapyrrol pathway. The ATP-dependent insertion of magnesium into protoporphyrin IX is catalyzed by the enzyme Mg-chelatase, which consists of three protein subunits (CHL D, CHL I, and CHL H). We have chosen the Mg-chelatase from tobacco to obtain more information about the mode of molecular action of this complex enzyme by elucidating the interactions in vitro and in vivo between the central subunit CHL D and subunits CHL I and CHL H. We dissected CHL D in defined peptide fragments and assayed for the essential part of CHL D for protein–protein interaction and enzyme activity. Surprisingly, only a small part of CHL D, i.e., 110 aa, was required for interaction with the partner subunits and maintenance of the enzyme activity. In addition, it could be demonstrated that CHL D is capable of forming homodimers. Moreover, it interacted with both CHL I and CHL H. Our data led to the outline of a two-step model based on the cooperation of the subunits for the chelation process.
Resumo:
Postmortem prefrontal cortices (PFC) (Brodmann’s areas 10 and 46), temporal cortices (Brodmann’s area 22), hippocampi, caudate nuclei, and cerebella of schizophrenia patients and their matched nonpsychiatric subjects were compared for reelin (RELN) mRNA and reelin (RELN) protein content. In all of the brain areas studied, RELN and its mRNA were significantly reduced (≈50%) in patients with schizophrenia; this decrease was similar in patients affected by undifferentiated or paranoid schizophrenia. To exclude possible artifacts caused by postmortem mRNA degradation, we measured the mRNAs in the same PFC extracts from γ-aminobutyric acid (GABA)A receptors α1 and α5 and nicotinic acetylcholine receptor α7 subunits. Whereas the expression of the α7 nicotinic acetylcholine receptor subunit was normal, that of the α1 and α5 receptor subunits of GABAA was increased when schizophrenia was present. RELN mRNA was preferentially expressed in GABAergic interneurons of PFC, temporal cortex, hippocampus, and glutamatergic granule cells of cerebellum. A protein putatively functioning as an intracellular target for the signal-transduction cascade triggered by RELN protein released into the extracellular matrix is termed mouse disabled-1 (DAB1) and is expressed at comparable levels in the neuroplasm of the PFC and hippocampal pyramidal neurons, cerebellar Purkinje neurons of schizophrenia patients, and nonpsychiatric subjects; these three types of neurons do not express RELN protein. In the same samples of temporal cortex, we found a decrease in RELN protein of ≈50% but no changes in DAB1 protein expression. We also observed a large (up to 70%) decrease of GAD67 but only a small decrease of GAD65 protein content. These findings are interpreted within a neurodevelopmental/vulnerability “two-hit” model for the etiology of schizophrenia.
Resumo:
We have used 19F NMR to analyze the metal ion-induced folding of the hammerhead ribozyme by selective incorporation of 5fluorouridine. We have studied the chemical shift and linewidths of 19F resonances of 5-fluorouridine at the 4 and 7 positions in the ribozyme core as a function of added Mg2+. The data fit well to a simple two-state model whereby the formation of domain 1 is induced by the noncooperative binding of Mg2+ with an association constant in the range of 100 to 500 M−1, depending on the concentration of monovalent ions present. The results are in excellent agreement with data reporting on changes in the global shape of the ribozyme. However, the NMR experiments exploit reporters located in the center of the RNA sections undergoing the folding transitions, thereby allowing the assignment of specific nucleotides to the separate stages. The results define the folding pathway at high resolution and provide a time scale for the first transition in the millisecond range.
Resumo:
Intramolecular chain diffusion is an elementary process in the conformational fluctuations of the DNA hairpin-loop. We have studied the temperature and viscosity dependence of a model DNA hairpin-loop by FRET (fluorescence resonance energy transfer) fluctuation spectroscopy (FRETfs). Apparent thermodynamic parameters were obtained by analyzing the correlation amplitude through a two-state model and are consistent with steady-state fluorescence measurements. The kinetics of closing the loop show non-Arrhenius behavior, in agreement with theoretical prediction and other experimental measurements on peptide folding. The fluctuation rates show a fractional power dependence (β = 0.83) on the solution viscosity. A much slower intrachain diffusion coefficient in comparison to that of polypeptides was derived based on the first passage time theory of SSS [Szabo, A., Schulten, K. & Schulten, Z. (1980) J. Chem. Phys. 72, 4350–4357], suggesting that intrachain interactions, especially stacking interaction in the loop, might increase the roughness of the free energy surface of the DNA hairpin-loop.
Resumo:
To quantitatively investigate the trafficking of the transmembrane lectin VIP36 and its relation to cargo-containing transport carriers (TCs), we analyzed a C-terminal fluorescent-protein (FP) fusion, VIP36-SP-FP. When expressed at moderate levels, VIP36-SP-FP localized to the endoplasmic reticulum, Golgi apparatus, and intermediate transport structures, and colocalized with epitope-tagged VIP36. Temperature shift and pharmacological experiments indicated VIP36-SP-FP recycled in the early secretory pathway, exhibiting trafficking representative of a class of transmembrane cargo receptors, including the closely related lectin ERGIC53. VIP36-SP-FP trafficking structures comprised tubules and globular elements, which translocated in a saltatory manner. Simultaneous visualization of anterograde secretory cargo and VIP36-SP-FP indicated that the globular structures were pre-Golgi carriers, and that VIP36-SP-FP segregated from cargo within the Golgi and was not included in post-Golgi TCs. Organelle-specific bleach experiments directly measured the exchange of VIP36-SP-FP between the Golgi and endoplasmic reticulum (ER). Fitting a two-compartment model to the recovery data predicted first order rate constants of 1.22 ± 0.44%/min for ER → Golgi, and 7.68 ± 1.94%/min for Golgi → ER transport, revealing a half-time of 113 ± 70 min for leaving the ER and 1.67 ± 0.45 min for leaving the Golgi, and accounting for the measured steady-state distribution of VIP36-SP-FP (13% Golgi/87% ER). Perturbing transport with AlF4− treatment altered VIP36-SP-GFP distribution and changed the rate constants. The parameters of the model suggest that relatively small differences in the first order rate constants, perhaps manifested in subtle differences in the tendency to enter distinct TCs, result in large differences in the steady-state localization of secretory components.
Resumo:
There is increasing evidence for an additional acute, nongenomic action of the mineralocorticoid hormone aldosterone on renal epithelial cells, leading to a two-step model of mineralocorticoid action on electrolyte excretion. We investigated the acute effect of aldosterone on intracellular free Ca2+ and on intracellular pH in an aldosterone-sensitive Madin-Darby canine kidney cell clone. Within seconds of application of aldosterone, but not of the glucocorticoid hydrocortisone, there was a 3-fold sustained increase of intracellular Ca2+ at a half-maximal concentration of 10(-10) mol/liter. Omission of extracellular Ca2+ prevented this hormone response. In the presence of extracellular Ca2+ aldosterone led to intracellular alkalinization. The Na+/H+ exchange inhibitor ethyl-isopropanol-amiloride (EIPA) prevented the aldosterone-induced alkalinization but not the aldosterone-induced increase of intracellular Ca2+. Omission of extracellular Ca2+ also prevented aldosterone-induced alkalinization. Instead, aldosterone led to a Zn(2+)-dependent intracellular acidification in the presence of EIPA, indicative of an increase of plasma membrane proton conductance. Under control conditions, Zn2+ prevented the aldosterone-induced alkalinization completely. We conclude that aldosterone stimulated net-entry of Ca2+ from the extracellular compartment and a plasma membrane H+ conductance as prerequisites for the stimulation of plasma membrane Na+/H+ exchange which in turn modulates K+ channel acitivity. It is probable that the aldosterone-sensitive H+ conductance maintains Na+/H+ exchange activity by providing an acidic environment in the vicinity of the exchanger. Thus, genomic action of aldosterone determines cellular transport equipment, whereas the nongenomic action regulates transporter activity that requires responses within seconds or minutes, which explains the rapid effects on electrolyte excretion.
Resumo:
We analyze the within- and between-population dynamics of the distribution of the number of repeats at multiple microsatellite DNA loci subject to stepwise mutation. Analytical expressions for moments up to the fourth order within a locus and the variance of between-locus variance at mutation-drift equilibrium have been obtained. These statistics may be used to test the appropriateness of the one-step mutation model and to detect between-locus variation in the mutation rate. Published data are compatible with the one-step mutation model, although they do not reject the two-step model. Using both multinomial sampling and diffusion approximations for the analysis of the genetic distance introduced by Goldstein et al. [Goldstein, D. B., Linares, A. R., Cavalli-Sforza, L. L. & Feldman, M. W. (1995) Proc. Natl. Acad. Sci. USA 92, 6723-6727], we show that this distance follows a chi 2 distribution with degrees of freedom equal to the number of loci when there is no variation in mutation rates among the loci. In the presence of such variation, the variance of the distance is obtained. We conclude that the number of microsatellite loci required for the construction of phylogenetic trees with reliable branch lengths may be several hundred. Also, mutations that change repeat scores by several units, even though extremely rare, may dramatically influence estimates of population parameters.