12 resultados para two-dimensional photonic crystals
em National Center for Biotechnology Information - NCBI
Resumo:
A powerful and potentially general approach to the targeting and crystallization of proteins on lipid interfaces through coordination of surface histidine residues to lipid-chelated divalent metal ions is presented. This approach, which should be applicable to the crystallization of a wide range of naturally occurring or engineered proteins, is illustrated here by the crystallization of streptavidin on a monolayer of an iminodiacetate-Cu(II) lipid spread at the air-water interface. This method allows control of the protein orientation at interfaces, which is significant for the facile production of highly ordered protein arrays and for electron density mapping in structural analysis of two-dimensional crystals. Binding of native streptavidin to the iminodiacetate-Cu lipids occurs via His-87, located on the protein surface near the biotin binding pocket. The two-dimensional streptavidin crystals show a previously undescribed microscopic shape that differs from that of crystals formed beneath biotinylated lipids.
Resumo:
Atomic level structures have been determined for the soluble forms of several colicins and toxins, but the structural changes that occur after membrane binding have not been well characterized. Changes occurring in the transition from the soluble to membrane-bound state of the C-terminal 190-residue channel polypeptide of colicin E1 (P190) bound to anionic membranes are described. In the membrane-bound state, the α-helical content increases from 60–64% to 80–90%, with a concomitant increase in the average length of the helical segments from 12 to 16 or 17 residues, close to the length required to span the membrane bilayer in the open channel state. The average distance between helical segments is increased and interhelix interactions are weakened, as shown by a major loss of tertiary structure interactions, decreased efficiency of fluorescence resonance energy transfer from an energy donor on helix V of P190 to an acceptor on helix IX, and decreased resonance energy transfer at higher temperatures, not observed in soluble P190, implying freedom of motion of helical segments. Weaker interactions are also shown by a calorimetric thermal transition of low cooperativity, and the extended nature of the helical array is shown by a 3- to 4-fold increase in the average area subtended per molecule to 4,200 Å2 on the membrane surface. The latter, with analysis of the heat capacity changes, implies the absence of a developed hydrophobic core in the membrane-bound P190. The membrane interfacial layer thus serves to promote formation of a highly helical extended two-dimensional flexible net. The properties of the membrane-bound state of the colicin channel domain (i.e., hydrophobic anchor, lengthened and loosely coupled α-helices, and close association with the membrane interfacial layer) are plausible structural features for the state that is a prerequisite for voltage gating, formation of transmembrane helices, and channel opening.
Resumo:
We report the results of x-ray reflectivity and grazing incidence x-ray diffraction studies of the liquid–vapor interface of a dilute alloy of Pb in Ga over the temperature range of 23–76°C. Our data show that the liquid–vapor interface of this alloy is stratified for several atomic diameters into the bulk liquid and that a monolayer of Pb forms the outermost stratum of the interface. Over the temperature range of 23–56°C, the monolayer of Pb is in an ordered hexagonal phase. At about 58°C, this monolayer undergoes a first-order transition to a hexatic phase, which remains stable to 76°C. An analogy between the observed transition and the first-order melting transition in a one-component classical plasma is suggested.
Resumo:
A question often posed in protein folding/unfolding studies is whether the process is fully cooperative or whether it contains sequential elements. To address this question, one needs tools capable of resolving different events. It seems that, at least in certain cases, two-dimensional (2D) IR correlation spectroscopy can provide answers to this question. To illustrate this point, we have turned to the Cro-V55C dimer of the λ Cro repressor, a protein known to undergo thermal unfolding in two discrete steps through a stable equilibrium intermediate. The secondary structure of this intermediate is compatible with that of a partially unfolded protein and involves a reorganization of the N terminus, whereas the antiparallel β-ribbon formed by the C-terminal part of each subunit remains largely intact. To establish whether the unfolding process involves sequential events, we have performed a 2D correlation analysis of IR spectra recorded over the temperature range of 20–95°C. The 2D IR correlation analysis indeed provides evidence for a sequential formation of the stable intermediate, which is created in three (closely related) steps. A first step entails the unfolding of the short N-terminal β-strand, followed by the unfolding of the α-helices in a second step, and the third step comprises the reorganization of the remaining β-sheet and of some unordered segments in the protein. The complete unfolding of the stable intermediate at higher temperatures also undergoes sequential events that ultimately end with the breaking of the H bonds between the two β-strands at the dimer interface.
Resumo:
The Ising problem consists in finding the analytical solution of the partition function of a lattice once the interaction geometry among its elements is specified. No general analytical solution is available for this problem, except for the one-dimensional case. Using site-specific thermodynamics, it is shown that the partition function for ligand binding to a two-dimensional lattice can be obtained from those of one-dimensional lattices with known solution. The complexity of the lattice is reduced recursively by application of a contact transformation that involves a relatively small number of steps. The transformation implemented in a computer code solves the partition function of the lattice by operating on the connectivity matrix of the graph associated with it. This provides a powerful new approach to the Ising problem, and enables a systematic analysis of two-dimensional lattices that model many biologically relevant phenomena. Application of this approach to finite two-dimensional lattices with positive cooperativity indicates that the binding capacity per site diverges as Na (N = number of sites in the lattice) and experiences a phase-transition-like discontinuity in the thermodynamic limit N → ∞. The zeroes of the partition function tend to distribute on a slightly distorted unit circle in complex plane and approach the positive real axis already for a 5×5 square lattice. When the lattice has negative cooperativity, its properties mimic those of a system composed of two classes of independent sites with the apparent population of low-affinity binding sites increasing with the size of the lattice, thereby accounting for a phenomenon encountered in many ligand-receptor interactions.
Resumo:
The function of many of the uncharacterized open reading frames discovered by genomic sequencing can be determined at the level of expressed gene products, the proteome. However, identifying the cognate gene from minute amounts of protein has been one of the major problems in molecular biology. Using yeast as an example, we demonstrate here that mass spectrometric protein identification is a general solution to this problem given a completely sequenced genome. As a first screen, our strategy uses automated laser desorption ionization mass spectrometry of the peptide mixtures produced by in-gel tryptic digestion of a protein. Up to 90% of proteins are identified by searching sequence data bases by lists of peptide masses obtained with high accuracy. The remaining proteins are identified by partially sequencing several peptides of the unseparated mixture by nanoelectrospray tandem mass spectrometry followed by data base searching with multiple peptide sequence tags. In blind trials, the method led to unambiguous identification in all cases. In the largest individual protein identification project to date, a total of 150 gel spots—many of them at subpicomole amounts—were successfully analyzed, greatly enlarging a yeast two-dimensional gel data base. More than 32 proteins were novel and matched to previously uncharacterized open reading frames in the yeast genome. This study establishes that mass spectrometry provides the required throughput, the certainty of identification, and the general applicability to serve as the method of choice to connect genome and proteome.
Resumo:
A form of two-dimensional (2D) vibrational spectroscopy, which uses two ultrafast IR laser pulses, is used to examine the structure of a cyclic penta-peptide in solution. Spectrally resolved cross peaks occur in the off-diagonal region of the 2D IR spectrum of the amide I region, analogous to those in 2D NMR spectroscopy. These cross peaks measure the coupling between the different amide groups in the structure. Their intensities and polarizations relate directly to the three-dimensional structure of the peptide. With the help of a model coupling Hamiltonian, supplemented by density functional calculations, the spectra of this penta-peptide can be regenerated from the known solution phase structure. This 2D-IR measurement, with an intrinsic time resolution of less than 1 ps, could be used in all time regimes of interest in biology.
Resumo:
Two-dimensional infrared spectra of peptides are introduced that are the direct analogues of two- and three-pulse multiple quantum NMR. Phase matching and heterodyning are used to isolate the phase and amplitudes of the electric fields of vibrational photon echoes as a function of multiple pulse delays. Structural information is made available on the time scale of a few picoseconds. Line narrowed spectra of acyl-proline-NH2 and cross peaks implying the coupling between its amide-I modes are obtained, as are the phases of the various contributions to the signals. Solvent-sensitive structural differences are seen for the dipeptide. The methods show great promise to measure structure changes in biology on a wide range of time scales.
Resumo:
In cardiac myocytes Ca2+ cross-signaling between Ca2+ channels and ryanodine receptors takes place by exchange of Ca2+ signals in microdomains surrounding dyadic junctions, allowing first the activation and then the inactivation of the two Ca2+-transporting proteins. To explore the details of Ca2+ signaling between the two sets of receptors we measured the two-dimensional cellular distribution of Ca2+ at 240 Hz by using a novel confocal imaging technique. Ca2+ channel-triggered Ca2+ transients could be resolved into dynamic “Ca2+ stripes” composed of hundreds of discrete focal Ca2+ releases, appearing as bright fluorescence spots (radius ≅ 0.5 μm) at reproducible sites, which often coincided with t-tubules as visualized with fluorescent staining of the cell membrane. Focal Ca2+ releases triggered stochastically by Ca2+ current (ICa) changed little in duration (≅7 ms) and size (≅100,000 Ca ions) between −40 and +60 mV, but their frequency of activation and first latency mirrored the kinetics and voltage dependence of ICa. The resolution of 0.95 ± 0.13 reproducible focal Ca2+ release sites per μm3 in highly Ca2+-buffered cells, where diffusion of Ca2+ is limited to 50 nm, suggests the presence of about one independent, functional Ca2+ release site per half sarcomere. The density and distribution of Ca2+ release sites suggest they correspond to dyadic junctions. The abrupt onset and termination of focal Ca2+ releases indicate that the cluster of ryanodine receptors in individual dyadic junctions may operate in a coordinated fashion.
Resumo:
We give conditions that rule out formation of sharp fronts for certain two-dimensional incompressible flows. We show that a necessary condition of having a sharp front is that the flow has to have uncontrolled velocity growth. In the case of the quasi-geostrophic equation and two-dimensional Euler equation, we obtain estimates on the formation of semi-uniform fronts.
Resumo:
Rhodopsin is the G protein-coupled receptor that upon light activation triggers the visual transduction cascade. Rod cell outer segment disc membranes were isolated from dark-adapted frog retinas and were extracted with Tween detergents to obtain two-dimensional rhodopsin crystals for electron crystallography. When Tween 80 was used, tubular structures with a p2 lattice (a = 32 A, b = 83 A, gamma = 91 degrees) were formed. The use of a Tween 80/Tween 20 mixture favored the formation of larger p22(1)2(1) lattices (a = 40 A, b = 146 A, gamma = 90 degrees). Micrographs from frozen hydrated frog rhodopsin crystals were processed, and projection structures to 7-A resolution for the p22(1)2(1) form and to 6-A resolution for the p2 form were calculated. The maps of frog rhodopsin in both crystal forms are very similar to the 9-A map obtained previously for bovine rhodopsin and show that the arrangement of the helices is the same. In a tentative topographic model, helices 4, 6, and 7 are nearly perpendicular to the plane of the membrane. In the higher-resolution projection maps of frog rhodopsin, helix 5 looks more tilted than it appeared previously. The quality of the two frog rhodopsin crystals suggests that they would be suitable to obtain a three-dimensional structure in which all helices would be resolved.
Resumo:
We report a general mass spectrometric approach for the rapid identification and characterization of proteins isolated by preparative two-dimensional polyacrylamide gel electrophoresis. This method possesses the inherent power to detect and structurally characterize covalent modifications. Absolute sensitivities of matrix-assisted laser desorption ionization and high-energy collision-induced dissociation tandem mass spectrometry are exploited to determine the mass and sequence of subpicomole sample quantities of tryptic peptides. These data permit mass matching and sequence homology searching of computerized peptide mass and protein sequence data bases for known proteins and design of oligonucleotide probes for cloning unknown proteins. We have identified 11 proteins in lysates of human A375 melanoma cells, including: alpha-enolase, cytokeratin, stathmin, protein disulfide isomerase, tropomyosin, Cu/Zn superoxide dismutase, nucleoside diphosphate kinase A, galaptin, and triosephosphate isomerase. We have characterized several posttranslational modifications and chemical modifications that may result from electrophoresis or subsequent sample processing steps. Detection of comigrating and covalently modified proteins illustrates the necessity of peptide sequencing and the advantages of tandem mass spectrometry to reliably and unambiguously establish the identity of each protein. This technology paves the way for studies of cell-type dependent gene expression and studies of large suites of cellular proteins with unprecedented speed and rigor to provide information complementary to the ongoing Human Genome Project.