5 resultados para tunneling current recognition

em National Center for Biotechnology Information - NCBI


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The design, realization, and test performances of an electronic junction based on single-electron phenomena that works in the air at room temperature are hereby reported. The element consists of an electrochemically etched sharp tungsten stylus over whose tip a nanometer-size crystal was synthesized. Langmuir-Blodgett films of cadmium arachidate were transferred onto the stylus and exposed to a H2S atmosphere to yield CdS nanocrystals (30-50 angstrom in diameter) imbedded into an organic matrix. The stylus, biased with respect to a flat electrode, was brought to the tunnel distance from the film and a constant gap value was maintained by a piezo-electric actuator driven by a feedback circuit fed by the tunneling current. With this set-up, it is possible to measure the behavior of the current flowing through the quantum dot when a bias voltage is applied. Voltage-current characteristics measured in the system displayed single-electron trends such as a Coulomb blockade and Coulomb staircase and revealed capacitance values as small as 10(-19) F.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examine the occurrence of the ≈300 known protein folds in different groups of organisms. To do this, we characterize a large fraction of the currently known protein sequences (≈140,000) in structural terms, by matching them to known structures via sequence comparison (or by secondary-structure class prediction for those without structural homologues). Overall, we find that an appreciable fraction of the known folds are present in each of the major groups of organisms (e.g., bacteria and eukaryotes share 156 of 275 folds), and most of the common folds are associated with many families of nonhomologous sequences (i.e., >10 sequence families for each common fold). However, different groups of organisms have characteristically distinct distributions of folds. So, for instance, some of the most common folds in vertebrates, such as globins or zinc fingers, are rare or absent in bacteria. Many of these differences in fold usage are biologically reasonable, such as the folds of metabolic enzymes being common in bacteria and those associated with extracellular transport and communication being common in animals. They also have important implications for database-based methods for fold recognition, suggesting that an unknown sequence from a plant is more likely to have a certain fold (e.g., a TIM barrel) than an unknown sequence from an animal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current understanding of electron tunneling through proteins has come from work on systems where donors and acceptors are held at fixed distances and orientations. The factors that control electron flow between proteins are less well understood, owing to uncertainties in the relative orientations and structures of the reactants during the very short time that tunneling occurs. As we report here, the way around such structural ambiguity is to examine oxidation–reduction reactions in protein crystals. Accordingly, we have measured and analyzed the kinetics of electron transfer between native and Zn-substituted tuna cytochrome c (cyt c) molecules in crystals of known structure. Electron transfer rates [(320 s−1 for *Zn-cyt c → Fe(III)-cyt c; 2000 s−1 for Fe(II)-cyt c → Zn-cyt c+)] over a Zn–Fe distance of 24.1 Å closely match those for intraprotein electron tunneling over similar donor–acceptor separations. Our results indicate that van der Waals interactions and water-mediated hydrogen bonds are effective coupling elements for tunneling across a protein–protein interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell–cell recognition often requires the formation of a highly organized pattern of receptor proteins (a synapse) in the intercellular junction. Recent experiments [e.g., Monks, C. R. F., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. (1998) Nature (London) 395, 82–86; Grakoui, A., Bromley, S. K., Sumen, C., Davis, M. M., Shaw, A. S., Allen, P. M. & Dustin, M. L. (1999) Science 285, 221–227; and Davis, D. M., Chiu, I., Fassett, M., Cohen, G. B., Mandelboim, O. & Strominger, J. L. (1999) Proc. Natl. Acad. Sci. USA 96, 15062–15067] vividly demonstrate a complex evolution of cell shape and spatial receptor–ligand patterns (several microns in size) in the intercellular junction during immunological synapse formation. The current view is that this dynamic rearrangement of proteins into organized supramolecular activation clusters is driven primarily by active cytoskeletal processes [e.g., Dustin, M. L. & Cooper, J. A. (2000) Nat. Immunol. 1, 23–29; and Wulfing, C. & Davis, M. M. (1998) Science 282, 2266–2269]. Here, aided by a quantitative analysis of the relevant physico-chemical processes, we demonstrate that the essential characteristics of synaptic patterns observed in living cells can result from spontaneous self-assembly processes. Active cellular interventions are superimposed on these self-organizing tendencies and may also serve to regulate the spontaneous processes. We find that the protein binding/dissociation characteristics, protein mobilities, and membrane constraints measured in the cellular environment are delicately balanced such that the length and time scales of spontaneously evolving patterns are in near-quantitative agreement with observations for synapse formation between T cells and supported membranes [Grakoui, A., Bromley, S. K., Sumen, C., Davis, M. M., Shaw, A. S., Allen, P. M. & Dustin, M. L. (1999) Science 285, 221–227]. The model we present provides a common way of analyzing immunological synapse formation in disparate systems (e.g., T cell/antigen-presenting cell junctions with different MHC-peptides, natural killer cells, etc.).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces the session on advanced speech recognition technology. The two papers comprising this session argue that current technology yields a performance that is only an order of magnitude in error rate away from human performance and that incremental improvements will bring us to that desired level. I argue that, to the contrary, present performance is far removed from human performance and a revolution in our thinking is required to achieve the goal. It is further asserted that to bring about the revolution more effort should be expended on basic research and less on trying to prematurely commercialize a deficient technology.