189 resultados para tumor suppressor gene
em National Center for Biotechnology Information - NCBI
Induction of ARF tumor suppressor gene expression and cell cycle arrest by transcription factor DMP1
Resumo:
Expression of the DMP1 transcription factor, a cyclin D-binding Myb-like protein, induces growth arrest in mouse embryo fibroblast strains but is devoid of antiproliferative activity in primary diploid fibroblasts that lack the ARF tumor suppressor gene. DMP1 binds to a single canonical recognition site in the ARF promoter to activate gene expression, and in turn, p19ARF synthesis causes p53-dependent cell cycle arrest. Unlike genes such as Myc, adenovirus E1A, and E2F-1, which, when overexpressed, activate the ARF-p53 pathway and trigger apoptosis, DMP1, like ARF itself, does not induce programmed cell death. Therefore, apart from its recently recognized role in protecting cells from potentially oncogenic signals, ARF can be induced in response to antiproliferative stimuli that do not obligatorily lead to apoptosis.
Resumo:
The factors that regulate the perpetuation and invasiveness of rheumatoid synovitis have been the subject of considerable inquiry, and the possibility that nonimmunologic defects can contribute to the disease has not been rigorously addressed. Using a mismatch detection system, we report that synovial tissue from the joints of severe chronic rheumatoid arthritis patients contain mutant p53 transcripts, which were not found in skin samples from the same patients or in joints of patients with osteoarthritis. Mutant p53 transcripts also were identified in synoviocytes cultured from rheumatoid joints. The predicted amino acid substitutions in p53 were identical or similar to those commonly observed in a variety of tumors and might influence growth and survival of rheumatoid synoviocytes. Thus, mutations in p53 and subsequent selection of the mutant cells may occur in the joints of patients as a consequence of inflammation and contribute to the pathogenesis of the disease.
Resumo:
Inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene causes the familial cancer syndrome, VHL disease, characterized by a predisposition to renal cell carcinoma and other tumor types. Loss of VHL gene function also is found in a majority of sporadic renal carcinomas. A preponderance of the tumor-disposing inherited missense mutations detected in VHL disease are within the elongin-binding domain of VHL. This region mediates the formation of a multiprotein VHL complex containing elongin B, elongin C, cul-2, and Rbx1. This VHL complex is thought to function as an E3 ubiquitin ligase. Here, we report that VHL proteins harboring mutations which disrupt elongin binding are unstable and rapidly degraded by the proteasome. In contrast, wild-type VHL proteins are directly stabilized by associating with both elongins B and C. In addition, elongins B and C are stabilized through their interactions with each other and VHL. Thus, the entire VHL/elongin complex is resistant to proteasomal degradation. Because the elongin-binding domain of VHL is frequently mutated in cancers, these results suggest that loss of elongin binding causes tumorigenesis by compromising VHL protein stability and/or potential VHL ubiquitination functions.
Resumo:
Germline defects in the tuberous sclerosis 2 (TSC2) tumor suppressor gene predispose humans and rats to benign and malignant lesions in a variety of tissues. The brain is among the most profoundly affected organs in tuberous sclerosis (TSC) patients and is the site of development of the cortical tubers for which the hereditary syndrome is named. A spontaneous germline inactivation of the Tsc2 locus has been described in an animal model, the Eker rat. We report that the homozygous state of this mutation (Tsc2Ek/Ek) was lethal in mid-gestation (the equivalent of mouse E9.5–E13.5), when Tsc2 mRNA was highly expressed in embryonic neuroepithelium. During this period homozygous mutant Eker embryos lacking functional Tsc2 gene product, tuberin, displayed dysraphia and papillary overgrowth of the neuroepithelium, indicating that loss of tuberin disrupted the normal development of this tissue. Interestingly, there was significant intraspecies variability in the penetrance of cranial abnormalities in mutant embryos: the Long–Evans strain Tsc2Ek/Ek embryos displayed these defects whereas the Fisher 344 homozygous mutant embryos had normal-appearing neuroepithelium. Taken together, our data indicate that the Tsc2 gene participates in normal brain development and suggest the inactivation of this gene may have similar functional consequences in both mature and embryonic brain.
Resumo:
The ANX7 gene is located on human chromosome 10q21, a site long hypothesized to harbor a tumor suppressor gene(s) (TSG) associated with prostate and other cancers. To test whether ANX7 might be a candidate TSG, we examined the ANX7-dependent suppression of human tumor cell growth, stage-specific ANX7 expression in 301 prostate specimens on a prostate tissue microarray, and loss of heterozygosity (LOH) of microsatellite markers at or near the ANX7 locus. Here we report that human tumor cell proliferation and colony formation are markedly reduced when the wild-type ANX7 gene is transfected into two prostate tumor cell lines, LNCaP and DU145. Consistently, analysis of ANX7 protein expression in human prostate tumor microarrays reveals a significantly higher rate of loss of ANX7 expression in metastatic and local recurrences of hormone refractory prostate cancer as compared with primary tumors (P = 0.0001). Using four microsatellite markers at or near the ANX7 locus, and laser capture microdissected tumor cells, 35% of the 20 primary prostate tumors show LOH. The microsatellite marker closest to the ANX7 locus showed the highest rate of LOH, including one homozygous deletion. We conclude that the ANX7 gene exhibits many biological and genetic properties expected of a TSG and may play a role in prostate cancer progression.
Resumo:
Clear cell-type renal cell carcinomas (clear RCC) are characterized almost universally by loss of heterozygosity on chromosome 3p, which usually involves any combination of three regions: 3p25-p26 (harboring the VHL gene), 3p12-p14.2 (containing the FHIT gene), and 3p21-p22, implying inactivation of the resident tumor-suppressor genes (TSGs). For the 3p21-p22 region, the affected TSGs remain, at present, unknown. Recently, the RAS association family 1 gene (isoform RASSF1A), located at 3p21.3, has been identified as a candidate lung and breast TSG. In this report, we demonstrate aberrant silencing by hypermethylation of RASSF1A in both VHL-caused clear RCC tumors and clear RCC without VHL inactivation. We found hypermethylation of RASSF1A's GC-rich putative promoter region in most of analyzed samples, including 39 of 43 primary tumors (91%). The promoter was methylated partially or completely in all 18 RCC cell lines analyzed. Methylation of the GC-rich putative RASSF1A promoter region and loss of transcription of the corresponding mRNA were related causally. RASSF1A expression was reactivated after treatment with 5-aza-2′-deoxycytidine. Forced expression of RASSF1A transcripts in KRC/Y, a renal carcinoma cell line containing a normal and expressed VHL gene, suppressed growth on plastic dishes and anchorage-independent colony formation in soft agar. Mutant RASSF1A had reduced growth suppression activity significantly. These data suggest that RASSF1A is the candidate renal TSG gene for the 3p21.3 region.
Resumo:
The VHL tumor suppressor gene is inactivated in patients with von Hippel-Lindau disease and in most sporadic clear cell renal carcinomas. Although VHL protein function remains unclear, VHL does interact with the elongin BC subunits in vivo and regulates RNA polymerase II elongation activity in vitro by inhibiting formation of the elongin ABC complex. Expression of wild-type VHL in renal carcinoma cells with inactivated endogenous VHL resulted in unaltered in vitro cell growth and decreased vascular endothelial growth factor (VEGF) mRNA expression and responsiveness to serum deprivation. VEGF is highly expressed in many tumors, including VHL-associated and sporadic renal carcinomas, and it stimulates neoangiogenesis in growing solid tumors. Despite 5-fold differences in VEGF mRNA levels, VHL overexpression did not affect VEGF transcription initiation or elongation as would have been suggested by VHL-elongin association. These results suggest that VHL regulates VEGF expression at a post-transcriptional level and that VHL inactivation in target cells causes a loss of VEGF suppression, leading to formation of a vascular stroma.
Resumo:
The product of the von Hippel-Lindau (VHL) tumor suppressor gene, the gene inactivated in VHL disease and in sporadic clear-cell renal carcinomas, has recently been shown to have as a functional target the transcription elongation complex, elongin (also called SIII). Here it is shown that there is a tightly regulated, cell-density-dependent transport of VHL into and/or out of the nucleus. In densely grown cells, the VHL protein is predominantly in the cytoplasm, whereas in sparse cultures, most of the protein can be detected in the nucleus. We have identified a putative nuclear localization signal in the first 60 and first 28 amino acids of the human and rat VHL protein, respectively. Sequences in the C-terminal region of the VHL protein may also be required for localization to the cytosol. These findings provide the initial indication of a novel cell density-dependent pathway that is responsible for the regulation of VHL cellular localization.
Resumo:
The human VHL tumor suppressor gene has been implicated in the inherited disorder von Hippel-Lindau disease and in sporadic renal carcinoma. The homologous rat gene encodes a 185-amino acid protein that is 88% sequence identical to the aligned 213-amino acid human VHL gene product. When expressed in COS-7 cells, both the human and the rat VHL proteins showed predominant nuclear, nuclear and cytosolic, or predominant cytosolic VHL staining by immunofluorescence. A complicated pattern of cellular proteins was seen that could be specifically coimmunoprecipitated with the introduced VHL protein. A complex containing VHL and proteins of apparent molecular masses 16 and 9 kDa was the most consistently observed. Certain naturally occurring VHL missense mutations demonstrated either complete or partial loss of the p16-p9 complex. Thus, the VHL tumor suppressor gene product is a nuclear protein, perhaps capable of specifically translocating between the nucleus and the cytosol. It is likely that VHL executes its functions via formation of specific multiprotein complexes. Identification of these VHL-associated proteins will likely clarify the physiology of this tumor suppressor gene.
Resumo:
Retinoids, synthetic and natural analogs of retinoic acid, exhibit potent growth inhibitory and cell differentiation activities that account for their beneficial effects in treating hyperproliferative diseases such as psoriasis, actinic keratosis, and certain neoplasias. Tazarotene is a synthetic retinoid that is used in the clinic for the treatment of psoriasis. To better understand the mechanism of retinoid action in the treatment of hyperproliferative diseases, we used a long-range differential display–PCR to isolate retinoid-responsive genes from primary human keratinocytes. We have identified a cDNA, tazarotene-induced gene 3 (TIG3; Retinoic Acid Receptor Responder 3) showing significant homology to the class II tumor suppressor gene, H-rev 107. Tazarotene treatment increases TIG3 expression in primary human keratinocytes and in vivo in psoriatic lesions. Increased TIG3 expression is correlated with decreased proliferation. TIG3 is expressed in a number of tissues, and expression is reduced in cancer cell lines and some primary tumors. In breast cancer cell lines, retinoid-dependent TIG3 induction is observed in lines that are growth suppressed by retinoids but not in nonresponsive lines. Transient over-expression of TIG3 in T47D or Chinese hamster ovary cells inhibits colony expansion. Finally, studies in 293 cells expressing TIG3 linked to an inducible promoter demonstrated decreased proliferation with increased TIG3 levels. These studies suggest that TIG3 may be a growth regulator that mediates some of the growth suppressive effects of retinoids.
Resumo:
Mutations of von Hippel–Lindau disease (VHL) tumor-suppressor gene product (pVHL) are found in patients with dominant inherited VHL syndrome and in the vast majority of sporadic clear cell renal carcinomas. The function of the pVHL protein has not been clarified. pVHL has been shown to form a complex with elongin B and elongin C (VBC) and with cullin (CUL)-2. In light of the structural analogy of VBC-CUL-2 to SKP1-CUL-1-F-box ubiquitin ligases, the ubiquitin ligase activity of VBC-CUL-2 was examined in this study. We show that VBC-CUL-2 exhibits ubiquitin ligase activity, and we identified UbcH5a, b, and c, but not CDC34, as the ubiquitin-conjugating enzymes of the VBC-CUL-2 ubiquitin ligase. The protein Rbx1/ROC1 enhances ligase activity of VBC-CUL-2 as it does in the SKP1-CUL-1-F-box protein ligase complex. We also found that pVHL associates with two proteins, p100 and p220, which migrate at a similar molecular weight as two major bands in the ubiquitination assay. Furthermore, naturally occurring pVHL missense mutations, including mutants capable of forming a complex with elongin B–elongin C-CUL-2, fail to associate with p100 and p220 and cannot exhibit the E3 ligase activity. These results suggest that pVHL might be the substrate recognition subunit of the VBC-CUL-2 E3 ligase. This is also, to our knowledge, the first example of a human tumor-suppressor protein being directly involved in the ubiquitin conjugation system which leads to the targeted degradation of substrate proteins.
Resumo:
PTEN/MMAC1 is a tumor suppressor gene located on chromosome 10q23. Inherited PTEN/MMAC1 mutations are associated with a cancer predisposition syndrome known as Cowden’s disease. Somatic mutation of PTEN has been found in a number of malignancies, including glioblastoma, melanoma, and carcinoma of the prostate and endometrium. The protein product (PTEN) encodes a dual-specificity protein phosphatase and in addition can dephosphorylate certain lipid substrates. Herein, we show that PTEN protein induces a G1 block when reconstituted in PTEN-null cells. A PTEN mutant associated with Cowden’s disease (PTEN;G129E) has protein phosphatase activity yet is defective in dephosphorylating inositol 1,3,4,5-tetrakisphosphate in vitro and fails to arrest cells in G1. These data suggest a link between induction of a cell-cycle block by PTEN and its ability to dephosphorylate, in vivo, phosphatidylinositol 3,4,5-trisphosphate. In keeping with this notion, PTEN can inhibit the phosphatidylinositol 3,4,5-trisphosphate-dependent Akt kinase, a downstream target of phosphatidylinositol 3-kinase, and constitutively active, but not wild-type, Akt overrides a PTEN G1 arrest. Finally, tumor cells lacking PTEN contain high levels of activated Akt, suggesting that PTEN is necessary for the appropriate regulation of the phosphatidylinositol 3-kinase/Akt pathway.
Sustained activation of Ras/Raf/mitogen-activated protein kinase cascade by the tumor suppressor p53
Resumo:
The p53 tumor suppressor gene can inhibit proliferation transiently, induce permanent cell-cycle arrest/senescence, or cause apoptosis depending on the cellular context. The mitogen-activated protein kinase (MAPK) cascade is known to play a crucial role in cell proliferation and differentiation. Moreover, the duration and intensity of MAPK activation can profoundly influence the biological response observed. We demonstrated that a sustained activation of MAPK cascade could be induced by wild-type p53 expression but not by p21Waf1/Cip1. Furthermore, exposure of normal cells to DNA-damaging agents induced MAPK activation in a p53-dependent manner. Tumor-derived p53 mutants defective in DNA binding failed to activate MAPK, implying that p53 transcriptional activity is essential for this function. Finally, activation of MAPK by p53 was inhibited by expression of dominant-negative Ras (N17Ras) and Raf1 mutants, indicating that MAPK activation by p53 is mediated at a level upstream of Ras. All of these findings establish a biochemical link between p53 signaling and the Ras/Raf/MAPK cascade.
Resumo:
Mutations in the VHL tumor suppressor gene result in constitutive expression of many hypoxia-inducible genes, at least in part because of increases in the cellular level of hypoxia-inducible transcription factor HIF1α, which in normal cells is rapidly ubiquitinated and degraded by the proteasome under normoxic conditions. The recent observation that the VHL protein is a subunit of an Skp1-Cul1/Cdc53-F-box (SCF)-like E3 ubiquitin ligase raised the possibility that VHL may be directly responsible for regulating cellular levels of HIF1α by targeting it for ubiquitination and proteolysis. In this report, we test this hypothesis directly. We report development of methods for production of the purified recombinant VHL complex and present direct biochemical evidence that it can function with an E1 ubiquitin-activating enzyme and E2 ubiquitin-conjugating enzyme to activate HIF1α ubiquitination in vitro. Our findings provide new insight into the function of the VHL tumor suppressor protein, and they provide a foundation for future investigations of the mechanisms underlying VHL regulation of oxygen-dependent gene expression.
Resumo:
The PTEN/MMAC1 phosphatase is a tumor suppressor gene implicated in a wide range of human cancers. Here we provide biochemical and functional evidence that PTEN/MMAC1 acts a negative regulator of the phosphoinositide 3-kinase (PI3-kinase)/Akt pathway. PTEN/MMAC1 impairs activation of endogenous Akt in cells and inhibits phosphorylation of 4E-BP1, a downstream target of the PI3-kinase/Akt pathway involved in protein translation, whereas a catalytically inactive, dominant negative PTEN/MMAC1 mutant enhances 4E-BP1 phosphorylation. In addition, PTEN/MMAC1 represses gene expression in a manner that is rescued by Akt but not PI3-kinase. Finally, higher levels of Akt activation are observed in human prostate cancer cell lines and xenografts lacking PTEN/MMAC1 expression when compared with PTEN/MMAC1-positive prostate tumors or normal prostate tissue. Because constitutive activation of either PI3-kinase or Akt is known to induce cellular transformation, an increase in the activation of this pathway caused by mutations in PTEN/MMAC1 provides a potential mechanism for its tumor suppressor function.