5 resultados para truth, amenesties, dealing with the past, prosecutions
em National Center for Biotechnology Information - NCBI
Resumo:
Mass extinctions have played many evolutionary roles, involving differential survivorship or selectivity of taxa and traits, the disruption or preservation of evolutionary trends and ecosystem organization, and the promotion of taxonomic and morphological diversifications—often along unexpected trajectories—after the destruction or marginalization of once-dominant clades. The fossil record suggests that survivorship during mass extinctions is not strictly random, but it often fails to coincide with factors promoting survival during times of low extinction intensity. Although of very serious concern, present-day extinctions have not yet achieved the intensities seen in the Big Five mass extinctions of the geologic past, which each removed ≥50% of the subset of relatively abundant marine invertebrate genera. The best comparisons for predictive purposes therefore will involve factors such as differential extinction intensities among regions, clades, and functional groups, rules governing postextinction biotic interchanges and evolutionary dynamics, and analyses of the factors that cause taxa and evolutionary trends to continue unabated, to suffer setbacks but resume along the same trajectory, to survive only to fall into a marginal role or disappear (“dead clade walking”), or to undergo a burst of diversification. These issues need to be addressed in a spatially explicit framework, because the fossil record suggests regional differences in postextinction diversification dynamics and biotic interchanges. Postextinction diversifications lag far behind the initial taxonomic and morphological impoverishment and homogenization; they do not simply reoccupy vacated adaptive peaks, but explore opportunities as opened and constrained by intrinsic biotic factors and the ecological and evolutionary context of the radiation.
Resumo:
Although mass extinctions probably account for the disappearance of less than 5% of all extinct species, the evolutionary opportunities they have created have had a disproportionate effect on the history of life. Theoretical considerations and simulations have suggested that the empty niches created by a mass extinction should refill rapidly after extinction ameliorates. Under logistic models, this biotic rebound should be exponential, slowing as the environmental carrying capacity is approached. Empirical studies reveal a more complex dynamic, including positive feedback and an exponential growth phase during recoveries. Far from a model of refilling ecospace, mass extinctions appear to cause a collapse of ecospace, which must be rebuilt during recovery. Other generalities include the absence of a clear correlation between the magnitude of extinction and the pace of recovery or the resulting ecological and evolutionary disruption the presence of a survival interval, with few originations, immediately after an extinction and preceding the recovery phase, and the presence of many lineages that persist through an extinction event only to disappear during the subsequent recovery. Several recoveries include numerous missing lineages, groups that are found before the extinction, then latter in the recovery, but are missing during the initial survival–recovery phase. The limited biogeographic studies of recoveries suggest considerable variability between regions.
Resumo:
The history and the ultimate future fate of the universe as a whole depend on how much the expansion of the universe is decelerated by its own mass. In particular, whether the expansion of the universe will ever come to a halt can be determined from the past expansion. However, the mass density in the universe does not only govern the expansion history and the curvature of space, but in parallel also regulates the growth of hierarchical structure, including the collapse of material into the dense, virialized regions that we identify with galaxies. Hence, the formation of galaxies and their clustered distribution in space depend not only on the detailed physics of how stars are formed but also on the overall structure of the universe. Recent observational efforts, fueled by new large, ground-based telescopes and the Hubble Space Telescope, combined with theoretical progress, have brought us to the verge of determining the expansion history of the universe and space curvature from direct observation and to linking this to the formation history of galaxies.
Resumo:
Studies of carbon isotopes and cadmium in bottom-dwelling foraminifera from ocean sediment cores have advanced our knowledge of ocean chemical distributions during the late Pleistocene. Last Glacial Maximum data are consistent with a persistent high-ΣCO2 state for eastern Pacific deep water. Both tracers indicate that the mid-depth North and tropical Atlantic Ocean almost always has lower ΣCO2 levels than those in the Pacific. Upper waters of the Last Glacial Maximum Atlantic are more ΣCO2-depleted and deep waters are ΣCO2-enriched compared with the waters of the present. In the northern Indian Ocean, δ13C and Cd data are consistent with upper water ΣCO2 depletion relative to the present. There is no evident proximate source of this ΣCO2-depleted water, so I suggest that ΣCO2-depleted North Atlantic intermediate/deep water turns northward around the southern tip of Africa and moves toward the equator as a western boundary current. At long periods (>15,000 years), Milankovitch cycle variability is evident in paleochemical time series. But rapid millennial-scale variability can be seen in cores from high accumulation rate series. Atlantic deep water chemical properties are seen to change in as little as a few hundred years or less. An extraordinary new 52.7-m-long core from the Bermuda Rise contains a faithful record of climate variability with century-scale resolution. Sediment composition can be linked in detail with the isotope stage 3 interstadials recorded in Greenland ice cores. This new record shows at least 12 major climate fluctuations within marine isotope stage 5 (about 70,000–130,000 years before the present).