9 resultados para tropics

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite striking differences in climate, soils, and evolutionary history among diverse biomes ranging from tropical and temperate forests to alpine tundra and desert, we found similar interspecific relationships among leaf structure and function and plant growth in all biomes. Our results thus demonstrate convergent evolution and global generality in plant functioning, despite the enormous diversity of plant species and biomes. For 280 plant species from two global data sets, we found that potential carbon gain (photosynthesis) and carbon loss (respiration) increase in similar proportion with decreasing leaf life-span, increasing leaf nitrogen concentration, and increasing leaf surface area-to-mass ratio. Productivity of individual plants and of leaves in vegetation canopies also changes in constant proportion to leaf life-span and surface area-to-mass ratio. These global plant functional relationships have significant implications for global scale modeling of vegetation–atmosphere CO2 exchange.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Comparison of mitochondrial and morphological divergence in eight populations of a widespread leaf-litter skink is used to determine the relative importance of geographic isolation and natural selection in generating phenotypic diversity in the Wet Tropics Rainforest region of Australia. The populations occur in two geographically isolated regions, and within each region, in two different habitats (closed rainforest and tall open forest) that span a well characterized ecological gradient. Morphological differences among ancient geographic isolates (separated for several million years, judging by their mitochondrial DNA sequence divergence) were slight, but morphological and life history differences among habitats were large and occurred despite moderate to high levels of mitochondrial gene flow. A field experiment identified avian predation as one potential agent of natural selection. These results indicate that natural selection operating across ecological gradients can be more important than geographic isolation in similar habitats in generating phenotypic diversity. In addition, our results indicate that selection is sufficiently strong to overcome the homogenizing effects of gene flow, a necessary first step toward speciation in continuously distributed populations. Because ecological gradients may be a source of evolutionary novelty, and perhaps new species, their conservation warrants greater attention. This is particularly true in tropical regions, where most reserves do not include ecological gradients and transitional habitats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although salamanders are characteristic amphibians in Holarctic temperate habitats, in tropical regions they have diversified evolutionarily only in tropical America. An adaptive radiation centered in Middle America occurred late in the history of a single clade, the supergenus Bolitoglossa (Plethodontidae), and large numbers of species now occur in diverse habitats. Sublineages within this clade decrease in number from the northern to southern parts of Middle America, and in Costa Rica, there are but three. Despite this phylogenetic constraint, Costa Rica has many species; the number of salamander species on one local elevational transect in the Cordillera de Talamanca may be the largest for any such transect in the world. Extraordinary variation in sequences of the mitochondrial gene cytochrome b within a clade of the genus Bolitoglossa in Costa Rica reveals strong phylogeographic structure within a single species, Bolitoglossa pesrubra. Allozymic variation in 19 proteins reveals a pattern largely concordant with the mitochondrial DNA phylogeography. More species exist than are currently recognized. Diversification occurs in restricted geographic areas and involves sharp geographic and elevational differentiation and zonation. In their degree of genetic differentiation at a local scale, these species of the deep tropics exceed the known variation of extratropical salamanders, which also differ in being less restricted in elevational range. Salamanders display “tropicality” in that although speciose, they are usually local in distribution and rare. They display strong ecological and physiological differentiation that may contribute importantly to morphological divergence and species formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the most extensive analysis of body size in marine invertebrates to date, we show that the size–frequency distributions of northeastern Pacific bivalves at the provincial level are surprisingly invariant in modal and median size as well as size range, despite a 4-fold change in species richness from the tropics to the Arctic. The modal sizes and shapes of these size–frequency distributions are consistent with the predictions of an energetic model previously applied to terrestrial mammals and birds. However, analyses of the Miocene–Recent history of body sizes within 82 molluscan genera show little support for the expectation that the modal size is an evolutionary attractor over geological time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Convection in the tropics is observed to involve a wide-ranging hierarchy of scales from a few kilometers to the planetary scales and also has a profound impact on short-term climate. The mechanisms responsible for this behavior present a major unsolved problem. A promising emerging approach to address these issues is cloud-resolving modeling. Here a family of numerical models is introduced specifically to model the feedback of small-scale deep convection on tropical planetary waves and tropical circulation in a highly efficient manner compatible with the approach through cloud-resolving modeling. Such a procedure is also useful for theoretical purposes. The basic idea in the approach is to use low-order truncation in the meriodonal direction through Gauss–Hermite quadrature projected onto a simple discrete radiation condition. In this fashion, the cloud-resolving modeling of equatorially trapped planetary waves reduces to the solution of a small number of purely zonal two-dimensional wave systems along a few judiciously chosen meriodonal layers that are coupled only by some additional source terms. The approach is analyzed in detail with full mathematical rigor for linearized equatorial primitive equations with source terms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biotic crisis overtaking our planet is likely to precipitate a major extinction of species. That much is well known. Not so well known but probably more significant in the long term is that the crisis will surely disrupt and deplete certain basic processes of evolution, with consequences likely to persist for millions of years. Distinctive features of future evolution could include a homogenization of biotas, a proliferation of opportunistic species, a pest-and-weed ecology, an outburst of speciation among taxa that prosper in human-dominated ecosystems, a decline of biodisparity, an end to the speciation of large vertebrates, the depletion of “evolutionary powerhouses” in the tropics, and unpredictable emergent novelties. Despite this likelihood, we have only a rudimentary understanding of how we are altering the evolutionary future. As a result of our ignorance, conservation policies fail to reflect long-term evolutionary aspects of biodiversity loss.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fossorial salamanders typically have elongate and attenuated heads and bodies, diminutive limbs, hands and feet, and extremely elongate tails. Batrachoseps from California, Lineatriton from eastern México, and Oedipina from southern México to Ecuador, all members of the family Plethodontidae, tribe Bolitoglossini, resemble one another in external morphology, which has evolved independently. Whereas Oedipina and Batrachoseps are elongate because there are more trunk vertebrae, a widespread homoplasy (parallelism) in salamanders, the genus Lineatriton is unique in having evolved convergently by an alternate “giraffe-neck” developmental program. Lineatriton has the same number of trunk vertebrae as related, nonelongated taxa, but individual trunk vertebrae are elongated. A robust phylogenetic hypothesis, based on sequences of three mtDNA genes, finds Lineatriton to be deeply nested within a clade characterized by generalized ecology and morphology. Lineatriton lineolus, the only currently recognized taxon in the genus, shows unanticipated genetic diversity. Surprisingly, geographically separated populations of L. lineolus are not monophyletic, but are sister taxa of different species of the morphologically generalized genus Pseudoeurycea. Lineatriton, long thought to be a unique monospecific lineage, is polyphyletic. Accordingly, the specialized morphology of Lineatriton displays homoplasy at two hierarchical levels: (i) with respect to other elongate lineages in the family (convergence), and (ii) within what is currently recognized as a single taxon (parallelism). These evolutionary events are of adaptive significance because to invade the lowland tropics salamanders must be either arboreal or fossorial; the repeated evolution of elongation and attenuation has led to multiple lowland invasions.